• Title/Summary/Keyword: Boundary-Value Problems

Search Result 368, Processing Time 0.023 seconds

NUMERICAL SOLUTIONS FOR SYSTEM OF SECOND ORDER BOUNDARY VALUE PROBLEMS

  • Al Said, E.A.;Noor, M.A.;Al Shejari, A.A.
    • Journal of applied mathematics & informatics
    • /
    • 제5권3호
    • /
    • pp.749-758
    • /
    • 1998
  • We investigate some numerical methods for computing approximate solutions of a system of second order boundary value problems associated with obstacle unilateral and contact problems. We show that cubic spline method gives approximations which are better than that computed by higer order spline and finite difference techniques.

VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS

  • Mohyud-Din, Syed Tauseef;Noor, Muhammad Aslam;Waheed, Asif
    • 대한수학회논문집
    • /
    • 제24권4호
    • /
    • pp.605-615
    • /
    • 2009
  • In this paper, we develop a reliable algorithm which is called the variation of parameters method for solving sixth-order boundary value problems. The proposed technique is quite efficient and is practically well suited for use in these problems. The suggested iterative scheme finds the solution without any perturbation, discritization, linearization or restrictive assumptions. Moreover, the method is free from the identification of Lagrange multipliers. The fact that the proposed technique solves nonlinear problems without using the Adomian's polynomials can be considered as a clear advantage of this technique over the decomposition method. Several examples are given to verify the reliability and efficiency of the proposed method. Comparisons are made to reconfirm the efficiency and accuracy of the suggested technique.

SERIES SOLUTIONS TO INITIAL-NEUMANN BOUNDARY VALUE PROBLEMS FOR PARABOLIC AND HYPERBOLIC EQUATIONS

  • Bougoffa, Lazhar;Al-Mazmumy, M.
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.87-97
    • /
    • 2013
  • The purpose of this paper is to employ a new useful technique to solve the initial-Neumann boundary value problems for parabolic, hyperbolic and parabolic-hyperbolic equations and obtain a solution in form of infinite series. The results obtained indicate that this approach is indeed practical and efficient.

A NOTE ON THE EXISTENCE OF SOLUTIONS OF HIGHER-ORDER DISCRETE NONLINEAR STURM-LIOUVILLE TYPE BOUNDARY VALUE PROBLEMS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.205-215
    • /
    • 2009
  • Sufficient conditions for the existence of at least one solution of the boundary value problems for higher order nonlinear difference equations $\{{{{{\Delta^n}x(i-1)=f(i,x(i),{\Delta}x(i),{\cdots},\Delta^{n-2}x(i)),i{\in}[1,T+1],\atop%20{\Delta^m}x(0)=0,m{\in}[0,n-3],}\atop%20\Delta^{n-2}x(0)=\phi(\Delta^{n-1}(0)),}\atop%20\Delta^{n-1}x(T+1)=-\psi(\Delta^{n-2}x(T+1))}\$. are established.

  • PDF

BOUNDARY VALUE PROBLEMS FOR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL INEQUALITY IN BANACH SPACE

  • KARTHIKEYAN, K.;CHANDRAN, C.;TRUJILLO, J.J.
    • Journal of applied mathematics & informatics
    • /
    • 제34권3_4호
    • /
    • pp.193-206
    • /
    • 2016
  • In this paper, we study boundary value problems for fractional integrodifferential equations involving Caputo derivative in Banach spaces. A generalized singular type Gronwall inequality is given to obtain an important priori bounds. Some sufficient conditions for the existence solutions are established by virtue of fractional calculus and fixed point method under some mild conditions.

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR THE SYSTEMS OF HIGHER ORDER BOUNDARY VALUE PROBLEMS ON TIME SCALES

  • Rao, A. Kameswara
    • Journal of applied mathematics & informatics
    • /
    • 제33권1_2호
    • /
    • pp.1-12
    • /
    • 2015
  • This paper is concerned with boundary value problems for systems of n-th order dynamic equations on time scales. Under the suitable conditions, the existence and multiplicity of positive solutions are established by using abstract fixed-point theorems.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR A COUPLED SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.773-785
    • /
    • 2012
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solutions to a general class of three-point boundary value problems for a coupled system of nonlinear fractional differential equations. The differential operator is taken in the Caputo fractional derivatives. By using Green's function, we transform the derivative systems into equivalent integral systems. The existence is based on Schauder fixed point theorem and contraction mapping principle. Finally, some examples are given to show the applicability of our results.

ON DICHOTOMY AND CONDITIONING FOR TWO-POINT BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FIRST ORDER MATRIX LYAPUNOV SYSTEMS

  • Murty, M.S.N.;Kumar, G. Suresh
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1361-1378
    • /
    • 2008
  • This paper deals with the study of dichotomy and conditioning for two-point boundary value problems associated with first order matrix Lyapunov systems, with the help of Kronecker product of matrices. Further, we obtain close relationship between the stability bounds of the problem on one hand, and the growth behaviour of the fundamental matrix solution on the other hand.

EXISTENCE THEOREMS OF BOUNDARY VALUE PROBLEMS FOR FOURTH ORDER NONLINEAR DISCRETE SYSTEMS

  • YANG, LIANWU
    • Journal of applied mathematics & informatics
    • /
    • 제37권5_6호
    • /
    • pp.399-410
    • /
    • 2019
  • In the manuscript, we concern with the existence of solutions of boundary value problems for fourth order nonlinear discrete systems. Some criteria for the existence of at least one nontrivial solution of the problem are obtained. The proof is mainly based upon the variational method and critical point theory. An example is presented to illustrate the main result.

Fixed Point Theorems for Mixed Monotone Vector Operators with Application to Systems of Nonlinear Boundary Value Problems

  • Sadrati, Abdellatif;Aouragh, My Driss
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.613-629
    • /
    • 2021
  • In this paper, we present and prove new existence and uniqueness fixed point theorems for vector operators having a mixed monotone property in partially ordered product Banach spaces. Our results extend and improve existing works on τ-φ-concave operators in the scalar case. As an application, we study the existence and uniqueness of positive solutions for systems of nonlinear Neumann boundary value problems.