• Title/Summary/Keyword: Boundary-Value Problems

Search Result 368, Processing Time 0.024 seconds

SOLVING SECOND ORDER SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH LAYER BEHAVIOR VIA INITIAL VALUE METHOD

  • GEBEYAW, WONDWOSEN;ANDARGIE, AWOKE;ADAMU, GETACHEW
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.331-348
    • /
    • 2018
  • In this paper, an initial value method for solving a class of singularly perturbed delay differential equations with layer behavior is proposed. In this approach, first the given problem is modified in to an equivalent singularly perturbed problem by approximating the term containing the delay using Taylor series expansion. Then from the modified problem, two explicit Initial Value Problems which are independent of the perturbation parameter, ${\varepsilon}$, are produced: the reduced problem and boundary layer correction problem. Finally, these problems are solved analytically and combined to give an approximate asymptotic solution to the original problem. To demonstrate the efficiency and applicability of the proposed method three linear and one nonlinear test problems are considered. The effect of the delay on the layer behavior of the solution is also examined. It is observed that for very small ${\varepsilon}$ the present method approximates the exact solution very well.

A Study on the Treatment of Open Boundary in the Two-Dimensional Free-Surface Wave Problems

  • Kim, Yong-Hwan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.63-78
    • /
    • 1994
  • This paper deals with the treatment of the open boundary in two-dimensional free-surface wave problems. Two numerical schemes are investigated for the implementation of the open boundary condition. One is to add the artificial damping term to the dynamic free-surface boundary condition, in which the determination of suitable damping coefficient and the damping zone is the most important. The other is a modified Orlanski's method, which is known to be very useful for the uni-directional waves. Using these two schemes, numerical tests have been conducted for a few typical free-surface wave problems. To obtain the numerical solution of the free-surface boundary value problem, the fundamental source-distribution method is used and the fully nonlinear free-surface boundary conditions are applied. The computed results are presented in comparison with those of others for the proof of practicality of these two schemes.

  • PDF

THE EXISTENCE AND MULTIPLICITY OF SOLUTIONS OF THREE-POINT p-LAPLACIAN BOUNDARY VALUE PROBLEMS WITH ONE-SIDED NAGUMO CONDITION

  • Zhang, Jianjun;Liu, Wenbin;Ni, Jinbo;Chen, Taiyong
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.209-220
    • /
    • 2007
  • In this paper, the existence and multiplicity of solutions of three-point p-Laplacian boundary value problems at resonance with one-sided Nagumo condition are studied by using degree theory and upper and lower solutions method. Some known results are improved.

SOLUTIONS OF STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.231-243
    • /
    • 2007
  • The existence of solutions of a class of two-point boundary value problems for higher order differential equations is studied. Sufficient conditions for the existence of at least one solution are established. It is of interest that the nonlinearity f in the equation depends on all lower derivatives, and the growth conditions imposed on f are allowed to be super-linear (the degrees of phases variables are allowed to be greater than 1 if it is a polynomial). The results are different from known ones since we don't apply the Green's functions of the corresponding problem and the method to obtain a priori bound of solutions are different enough from known ones. Examples that can not be solved by known results are given to illustrate our theorems.

Approximating Coupled Solutions of Coupled PBVPs of Non-linear First Order Ordinary Differential Equations

  • Dhage, Bapurao Chandrabhan
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.221-233
    • /
    • 2016
  • The present paper proposes a new monotone iteration method for existence as well as approximation of the coupled solutions for a coupled periodic boundary value problem of first order ordinary nonlinear differential equations. A new hybrid coupled fixed point theorem involving the Dhage iteration principle is proved in a partially ordered normed linear space and applied to the coupled periodic boundary value problems for proving the main existence and approximation results of this paper. An algorithm for the coupled solutions is developed and it is shown that the sequences of successive approximations defined in a certain way converge monotonically to the coupled solutions of the related differential equations under some suitable mixed hybrid conditions. A numerical example is also indicated to illustrate the abstract theory developed in the paper.

NEHARI MANIFOLD AND MULTIPLICITY RESULTS FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN

  • Ghanmi, Abdeljabbar;Zhang, Ziheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1297-1314
    • /
    • 2019
  • In this work, we investigate the following fractional boundary value problems $$\{_tD^{\alpha}_T({\mid}_0D^{\alpha}_t(u(t)){\mid}^{p-2}_0D^{\alpha}_tu(t))\\={\nabla}W(t,u(t))+{\lambda}g(t){\mid}u(t){\mid}^{q-2}u(t),\;t{\in}(0,T),\\u(0)=u(T)=0,$$ where ${\nabla}W(t,u)$ is the gradient of W(t, u) at u and $W{\in}C([0,T]{\times}{\mathbb{R}}^n,{\mathbb{R}})$ is homogeneous of degree r, ${\lambda}$ is a positive parameter, $g{\in}C([0,T])$, 1 < r < p < q and ${\frac{1}{p}}<{\alpha}<1$. Using the Fibering map and Nehari manifold, for some positive constant ${\lambda}_0$ such that $0<{\lambda}<{\lambda}_0$, we prove the existence of at least two non-trivial solutions

MODIFIED DECOMPOSITION METHOD FOR SOLVING INITIAL AND BOUNDARY VALUE PROBLEMS USING PADE APPROXIMANTS

  • Noor, Muhammad Aslam;Noor, Khalida Inayat;Mohyud-Din, Syed Tauseef;Shaikh, Noor Ahmed
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1265-1277
    • /
    • 2009
  • In this paper, we apply a new decomposition method for solving initial and boundary value problems, which is due to Noor and Noor [18]. The analytical results are calculated in terms of convergent series with easily computable components. The diagonal Pade approximants are applied to make the work more concise and for the better understanding of the solution behavior. The proposed technique is tested on boundary layer problem; Thomas-Fermi, Blasius and sixth-order singularly perturbed Boussinesq equations. Numerical results reveal the complete reliability of the suggested scheme. This new decomposition method can be viewed as an alternative of Adomian decomposition method and homotopy perturbation methods.

  • PDF

POSITIVE SOLUTIONS FOR A THREE-POINT FRACTIONAL BOUNDARY VALUE PROBLEMS FOR P-LAPLACIAN WITH A PARAMETER

  • YANG, YITAO;ZHANG, YUEJIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.269-284
    • /
    • 2016
  • In this paper, we firstly use Krasnosel'skii fixed point theorem to investigate positive solutions for the following three-point boundary value problems for p-Laplacian with a parameter $({\phi}_P(D^{\alpha}_{0}+u(t)))^{\prime}+{\lambda}f(t, u(t))=0$, 0$D^{\alpha}_{0}+u(0)=u(0)=u{\prime}{\prime}(0)=0$, $u^{\prime}(1)={\gamma}u^{\prime}(\eta)$ where ϕp(s) = |s|p−2s, p > 1, $D^{\alpha}_{0^+}$ is the Caputo's derivative, α ∈ (2, 3], η, γ ∈ (0, 1), λ > 0 is a parameter. Then we use Leggett-Williams fixed point theorem to study the existence of three positive solutions for the fractional boundary value problem $({\phi}_P(D^{\alpha}_{0}+u(t)))^{\prime}+f(t, u(t))=0$, 0$D^{\alpha}_{0}+u(0)=u(0)=u{\prime}{\prime}(0)=0$, $u^{\prime}(1)={\gamma}u^{\prime}(\eta)$ where ϕp(s) = |s|p−2s, p > 1, $D^{\alpha}_{0^+}$ is the Caputo's derivative, α ∈ (2, 3], η, γ ∈ (0, 1).