• Title/Summary/Keyword: Boundary-Element Method

Search Result 2,118, Processing Time 0.026 seconds

Analysis of Torque on Spur Gear by Inverse Problem (역문제에 의한 평치차의 토크 해석)

  • 박성완
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.24-33
    • /
    • 2003
  • This study proposed a technique for inverse problem, linear approximation of contact position and loading in single and double meshing of transmission contact element using 2-dimension model considered near the tooth by root stress. Determination of root stress is carried out far the gear tooth by finite element method and boundary element method. Boundary element discretization near contact point is carefully performed to keep high computational accuracy. The predicted results of boundary element method are good accordance with that of finite element method.

A Study on Plate Bending Analysis Using Boundary Element Method

  • Son, Jae-hyeon;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.232-242
    • /
    • 2022
  • This study presents a method for level ice-structure interaction analysis to estimate the fatigue damage of arctic structures by applying plate theory to the behavior of level ice. The boundary element method (BEM), which incurs a lower computational cost than the finite element method (FEM), was introduced to solve the plate bending problem. The BEM formulation was performed by applying the BEM to plate theory. Finally, to check the validity of the proposed method, the BEM results and FEM results obtained using the ABAQUS commercial software were compared. The response results of the BEM analysis agreed well with those of the FEM analysis. Based on the results of the analysis, the BEM approach is considered to be very powerful in level ice-structure interaction analysis for estimating level ice-induced fatigue damage. Further work is being conducted to perform level ice fracture analysis based on the stress field calculated using the boundary element method.

On the Vibration Analysis of the Floating Elastic Body Using the Boundary Integral Method in Combination with Finite Element Method

  • K.T.,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.19-36
    • /
    • 1987
  • In this research the coupling problem between the elastic structure and the fluid, specially the hydroelastic harmonic vibration problem, is studied. In order to couple the domains, i.e., the structural domain and the fluid domain, the boundary integral method(direct boundary integral formulation) is used in the fluid domain in combination with the finite element method for the structure. The boundary integral method has been widely developed to apply it to the hydroelastic vibration problem. The hybrid boundary integral method using eigenfunctions on the radiation boundaries and the boundary integral method using the series form image-functions to replace the even bottom and free surface boundaries in case of high frequencies have been developed and tested. According to the boundary conditions and the frequency ranges the different boundary integral methods with the different idealizations of the fluid boundaries have been studied. Using the same interpolation functions for the pressure distribution and the displacement the two domains have been coupled and using Hamilton principle the solution of the hydroelastic have been obtained through the direct minimizing process. It has become evident that the finite-boundary element method combining with the eigenfunction or the image-function method give good results in comparison with the experimental ones and the other numerical results by the finite element method.

  • PDF

Numerical Solutions of Multi-Dimensional Solidification/Melting Problems by the Dual Reciprocity Boundary Element Method

  • Jo, Jong-Chull;Shin, Won-Ky
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.617-624
    • /
    • 1997
  • This Paper Presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available.

  • PDF

A Boundary Integral Equation Formulation for an Unsteady Anisotropic-Diffusion Convection Equation of Exponentially Variable Coefficients and Compressible Flow

  • Azis, Mohammad Ivan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.557-581
    • /
    • 2022
  • The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.

The Boundary Element Analysis of Wave Force acting on Multiple Cylinders

  • Kim, Nam-Hyeong;Cao, Tan Ngooc Than;Yang, Soon-Bo
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.561-569
    • /
    • 2012
  • In this paper, the boundary element method is applied to solve the diffraction of waves by multiple vertical cylinders under the assumption of linear wave theory. A numerical analysis by boundary element method is based on Green's theorem and introduced to an integral equation for the fluid velocity potential around the cylinders. The numerical results obtained in this study are compared with the experimental data and the results of the theory using multiple scattering techniques. The comparisons show strong agreement. This numerical analysis method developed by using boundary element method could be used broadly for the design of various offshore structures to be constructed in coastal zones in the future.

Application of the Boundary Element Method to Finite Deflection of Elastic Bending Plates

  • Kim, Chi Kyung
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • The present study deals with an approximate integral equation approach to finite deflection of elastic plates with arbitrary plane form. An integral formulation leads to a system of boundary integral equations involving values of deflection, slope, bending moment and transverse shear force along the edge. The basic principles of the development of boundary element technique are reviewed. A computer program for solving for stresses and deflections in a isotropic, homogeneous, linear and elastic bending plate is developed. The fundamental solution of deflection and moment is employed in this program. The deflections and moments are assumed constant within the quadrilateral element. Numerical solutions for sample problems, obtained by the direct boundary element method, are presented and results are compared with known solutions.

THE BOUNDARY ELEMENT METHOD FOR POTENTIAL PROBLEMS WITH SINGULARITIES

  • YUN, BEONG IN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1999
  • A new procedure of the boundary element method(BEM),say, singular BEM for the potential problems with singularities is presented. To obtain the numerical solution of which asymptotic behavior near the singularities is close to that of the analytic solution, we use particular elements on the boundary segments containing singularities. The Motz problem and the crack problem are taken as the typical examples, and numerical results of these cases show the efficiency of the present method.

  • PDF

A Numerical Calculation of Eddy Current Field by Applying FEM and BEM Alternately (유한요소법과 경계요소법의 교호적용에 의한 와전류장 해석)

  • Im, Jae-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.457-461
    • /
    • 2000
  • The finite element method (FEM) is suitable for the analysis of a complicated region that includes nonlinear materials, whereas the boundary element method (BEM) is naturally effective for analyzing a very large region with linear characteristics. Therefore, considering the advantages in both methods, a novel algorithm for the alternate application of the FEM and BEM to magnetic field problems with the open boundary is presented. This approach avoids the disadvantages of the typical numerical methods with the open boundary problem such as a great number of unknown values for the FEM and non-symmetric matrix for the Hybrid FE-BE method. The solution of the overall problems is obtained by iterative calculations accompanied with the new acceleration method.

  • PDF

Influence of Modeling Errors in the Boundary Element Analysis of EEG Forward Problems upon the Solution Accuracy

  • Kim, Do-Won;Jung, Young-Jin;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2009
  • Accurate electroencephalography (EEG) forward calculation is of importance for the accurate estimation of neuronal electrical sources. Conventional studies concerning the EEG forward problems have investigated various factors influencing the forward solution accuracy, e.g. tissue conductivity values in head compartments, anisotropic conductivity distribution of a head model, tessellation patterns of boundary element models, the number of elements used for boundary/finite element method (BEM/FEM), and so on. In the present paper, we investigated the influence of modeling errors in the boundary element volume conductor models upon the accuracy of the EEG forward solutions. From our simulation results, we could confirm that accurate construction of boundary element models is one of the key factors in obtaining accurate EEG forward solutions from BEM. Among three boundaries (scalp, outer skull, and inner skull boundary), the solution errors originated from the modeling error in the scalp boundary were most significant. We found that the nonuniform error distribution on the scalp surface is closely related to the electrode configuration and the error distributions on the outer and inner skull boundaries have statistically meaningful similarity to the curvature distributions of the boundary surfaces. Our simulation results also demonstrated that the accumulation of small modeling errors could lead to considerable errors in the EEG source localization. It is expected that our finding can be a useful reference in generating boundary element head models.