
1. Introduction

The use of the Arctic route and the demand for ships operating in the 
polar region have greatly increased over time owing to global warming. 
Moreover, the structural stability of vessels operating in the polar 
regions has attracted increasing attention, and various studies to 
estimate the ice load have been conducted. Increases in computer 
performance have allowed studies to analyze the behaviors of ice using 
computer simulations. The methods used in these studies can be broadly 
classified as direct numerical methods or semi-analytical methods.

Among direct numerical methods, the finite element method (FEM) 
is mainly used for numerical analysis. The FEM has been used for many 
years to solve realistic engineering problems with linear and nonlinear 
behaviors involving arbitrary shapes and loads in 2D and 3D spaces. 
Such direct numerical methods have the advantage of obtaining 
sufficiently realistic results for fracture behaviors if material properties 
and elements are modeled according to physical phenomena, because 
they use the FEM to model ice. However, direct numerical methods 
have the disadvantage of high computational cost when the size of the 
elements becomes small enough to obtain a realistic result. 
Furthermore, this approach must be accompanied by non-linear 
analysis because of the non-linear properties of the material until 
failure; this also increases the analysis time. Therefore, direct numerical 

methods are basically used for detailed analysis of a short time domain. 
Jeon and Kim (2021) modeled the interaction between level ice and 
structures by performing a finite element collision simulation using a 
damage-based erosion model. 

In contrast, semi-analytical methods aim to find a analytical solution 
by introducing specific situations and various assumptions. These 
methods have the advantage of very short analysis times because they 
obtain analytical solutions, unlike numerical analysis methods, which 
require long computational times. Therefore, this type of method is 
mainly used for long-term analysis. Consequently, in certain situation, 
the equation provides reliable results. However, there is a disadvantage 
in that it is difficult to obtain an accurate solution in this way, 
considering the complex shapes of ice and nonlinear characteristics of 
the material. One typical example of this type of method is the 
Simulator for Arctic Marine Structures (SAMS) developed by NTNU 
(Norwegian University of Science and Technology) in Norway 
(Lubbad and Løset, 2011; Lubbad et al., 2018; Raza et al., 2019).

This study proposes a numerical method for level ice-structure 
interaction analysis as a basic tool for long-term fatigue analysis of 
ships operating in polar waters. A method with a short analysis time, 
such as a semi-analytical method, is suitable for long-term analysis 
simulations of fatigue due to contact between level ice and structures 
such as ships operating in polar waters. However, existing semi- 
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analytical methods still have problems in terms of the accuracy of the 
results because various assumptions are introduced, as mentioned 
above. Therefore, we try to solve this problem by using a numerical 
method with a low computational cost for level ice-structure 
interaction analysis. The proposed analysis method uses the boundary 
element method (BEM) as a numerical method. This is the first attempt 
at using the BEM to analyze level ice-structure interaction, for which 
the BEM is expected to provide high analytical accuracy and a low 
computational cost.

The BEM is more advantageous in terms of computational cost than 
the FEM because elements are divided only at boundaries. 
Furthermore, when the level ice is broken and a new boundary is 
created in the conventional FEM, the stiffness matrix must be newly 
constructed. However, in the case of BEM, the construction time of a 
new stiffness matrix can also be shortened because only the stiffness 
matrix components corresponding to the changed boundary elements 
need to be modified. Furthermore, the third and fourth derivative 
values of the deflection of the plate should be calculated to determine 
the stress response of the plate. In the case of FEM, significant 
accuracy problems occur depending on the type of element. However, 
the BEM is highly effective at finding the differential values (e.g., 
stress, strain, moment, shear force) of the response (e.g., deflection) 
within the domain because the differential value within the domain is 
directly derived from the Rayleigh-Green identity, which will be 
discussed later (Katsikadelis, 2002).

A governing equation for the plate bending problem is first 
established by introducing the plate theory in Section 2.1. In Section 
2.2, the BEM for the governing equation is formulated using the BEM. 
To ensure efficient calculations in this formulation, a constant 
boundary element was used to lower the computational cost. Analyses 
using the established BEM methodology were performed for square 
and triangular models under various boundary conditions and loads. 
The BEM analysis results were then compared with the FEM analysis 
results obtained using the commercial finite element structural analysis 
software Abaqus.

2. Theoretical Background 

2.1 Plate Theory
A plate is a flat shape with a relatively small thickness (h) and is 

defined by the middle plane that bisects the plate thickness, the plate 

Fig. 1 Thin plate

thickness, and the boundary of the plate. In this study, the plate was 
assumed to be a thin plate. As shown in Fig. 1, the amount of deflection 
w of an elastic plate subjected to a load perpendicular to the plate can be 
expressed by the governing equation shown in Eq. (1) (Sillard, 1974).

∇     (1)

Here,  is the bending stiffness of the plate, which is defined by the 
modulus of elasticity , Poisson's ratio , and plate thickness , as 
follows:

 
 



(2)

where ∇ is a biharmonic operator, for which the Laplacian operator is 
applied consecutively. Using the general Hooke’s law of 3D isotropy, 
the plate’s bending moment and torsional moments  ,  , and   
can be derived from the strain-deflection relationship of the thin plate 
as follows (Armenakas and Katsikadelis, 1989):
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The bending moment and effective shear force defined at the 
boundary are differential operators  and , which can be expressed 
as follows:
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here the -direction is the normal direction at the boundary point, the 
-direction is the tangent direction at the boundary point, and the 

-direction is the arc direction at the boundary point on the boundary 
line with a curvature. The - and -directions coincide at the boundary 
line, which is a straight line.

The boundary conditions of the plate are expressed as Eqs. (8) and 
(9). The fixed, simply supported, and free boundary conditions are 
defined in accordance with the values of  and   ( = 1,2,3).

     (8)




     (9)
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Additional boundary conditions are required owing to the 
discontinuous nature at a corner point where the normal and tangent 
directions at the boundary change discontinuously. The boundary 
condition at the kth corner point is given as follows:

⟦⟧
  (10)

 
where 

   is determined by the boundary conditions at both 
boundaries of the corner point.  is a torsional moment operator that 
satisfies the relationship of 

  and can be expressed as Eq. (11). 
The torsional moment has discontinuous values owing to the 
discontinuous changes in the normal and tangent directions at the 
corner point. It is a fictitious corner force, equal to the difference in 
⟦⟧ values, and can be expressed as Eq. (12).  and   denote 
two torsional moments at both boundaries from the corner point.

 



 (11)

⟦⟧   (12)

2.2 Boundary Element Method Formulation of Plate Theory
The BEM formulation is performed using a constant boundary 

element to reduce the computational cost. This formulation starts from 
the Rayleigh-Green identity based on the Gauss-Green theorem. The 
Rayleigh-Green identity is an identity that is established for two 
random functions  and , where the fourth derivative is continuous 
within the domain  and the third derivative is continuous at the 
domain boundary . It represents the relationship expressed as follows:
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Eq. (13) can be reorganized as Eq. (14) by using the operator 
introduced in section 2.1. Eq. (14) is called the generalized 
Rayleigh-Green identity.
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The deflection , which is a response of the plate, is calculated 
through the relationship with function  using Eq. (14), which is the 
Rayleigh-Green identity. The function  used here is the fundamental 
solution of the biharmonic equation, and indicates a particular solution 
of Eq. (15). 

∇     (15)

Fig. 2 Source point and filed point on the Plate 

In Eq. (15),  is the Dirac delta function. The fundamental 
solution    is also defined by the points  and . 
Physically,  denotes the plate deflection at point  when a 
concentrated unit load is given at point P. The fundamental solution  
can be determined by analytically solving the fourth-order differential 
equation of Eq. (15) and is expressed as Eq. (16). The integral constant 
that is generated when is analytically solved is obtained as a result of 
the physical conditions to be considered (Katsikadelis, 2014).

  


ln        (16)

In Fig. 2,  denotes a rotational symmetry function,  denotes the 
source point at the center of the rotational symmetry of function  in the 
domain, and  denotes the field point representing the value of the 
response field. Furthermore,  and  denote the source point and field 
point at the boundary, respectively.

Values inside the domain can be calculated using the Rayleigh- 
Green identity and the fundamental solution. When the source point of 
 in Eq. (10) is positioned inside the domain, the deflection inside the 
domain is calculated using the ⟦⟧ value at , , , , 
and the corner point at the boundary, as shown in Eq. (17).

 










 (17)
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The term


 , which still remains as the domain integral, is 

calculated by applying the boundary integral and the Rayleigh-Green 

identity again, and converting to the boundary integral 


 

(Katsikadelis, 2014).

2.2.1 Boundary integral equation
The values inside the domain can be obtained from the boundary 

values, and the boundary values are calculated from the boundary 
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condition and boundary integral equation. The first boundary integral 
equation can be obtained by matching the source point in the Rayleigh- 
Green identity to the boundary and corner points, respectively. This 
can be expressed as follows (Katsikadelis et al., 1977):




 











 (18)

        


⟦⟧
⟦⟧

This  value is different from  in Eq. (8). As shown in Fig. 2,  
indicates the angle inside the domain at source point . When the 
source point  is matched to the corner point at which the  and  
directions change discontinuously,  is the inner angle value of the 
corner. If the source point is positioned at a smooth boundary where the 
 and  directions are not discontinuous,  is calculated as .

The second boundary integral equation can be obtained through the 
-direction differentiation of  when point  inside the domain 
approaches to point  at the boundary, and can be expressed as follows 
(Bezine, 1978):




 













 (19)
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where  is a function that has been directionally differentiated in the  
direction,  which is the direction that is normal to the boundary at 
point  in Fig. 2. It can be expressed as follows:


 




ln (20)

The linear algebraic equation can be constructed by using both the 
boundary conditions and boundary integral equations obtained above, 
and the boundary values can be calculated through this process. The 
method of calculating detailed boundary elements involving the 
calculation of singular points of matrix elements and near-singular 
points is introduced in Katsikadelis (2002).

3. BEM Verification for Plate Problem

3.1 Analysis Model
The BEM code of the plate bending problem was verified using 

two plate models. Square and triangular models were used as 
simple analysis models. For these two models, the elements were 
divided into boundary and finite elements, as shown in Fig. 3. The 
physical properties of the square model are summarized in Table 1, 
and the material properties of the triangular model are summarized 
in Table 2.

For both triangular and square models, a Poisson's ratio of 0.3 and a 
modulus of elasticity of 2×108 N/m2 were used. The square model 
consisted of 7,500 finite elements and 400 boundary elements. The 
triangular model consisted of 3,043 finite elements and 242 boundary 
elements.

Table 1 Properties of square model

Variable FEM BEM
Number of elements 7,500 400

Poisson’s ratio 0.3
Young’s modulus 2×108 N/m2

Thickness 0.05 m
Length 3 m
Width 1 m

y[
m

]

(a) Square model (FEM) (b) Square model (BEM)

y[
m

]

(c) Triangular model (FEM) (d) Triangular model (BEM)

Fig. 3 Finite element method (FEM) and BEM models for square and triangular models
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Table 2 Properties of triangular model

Variable FEM BEM
Number of elements 3,043 242

Poisson’s ratio 0.3
Young’s modulus 2×108 N/m2

Thickness 0.05 m
Base length 5 m

Height 2.5 m

To verify the BEM code for the plate problem, analyses was 
performed under various boundary and load conditions. Then, the 
analysis results were compared with the analysis results obtained using 
the FEM. First, the responses obtained using fixed boundaries and 
distributed loads were checked. For this purpose, a fixed boundary 
constraint was given to all boundaries for the square model, and a load 
of    (N) was applied over the entire domain of the plate. 
To verify the responses by simply supported and distributed loads, a 
simply supported constraint was given to the boundary for the 
triangular model. Then, analysis was performed by applying the load of 
   (N) over the entire domain of the plate. This 
corresponds to cases 1 and 2 in Table 3.

In the case of the boundary condition of a semi-infinite ice sheet 
such as level ice, It is similar to the situation in which a free boundary 
is applied at the boundary of the level ice that comes in contact with the 
ship, and a strong constraint condition is applied at all boundaries 
except the free boundary. Therefore, the case of exposure to a 
concentrated unit load in the boundary condition including the free 
boundary was also analyzed. For the square and triangular models, the 

free boundary was applied to the boundary at   0 m, and the fixed 
boundary was applied to all boundaries except the free boundary. Then, 
for the square model, a concentrated unit load of 1 N was applied to the 
position of   0.5 m and   1.5 m. For the triangular model, a 
concentrated unit load of 1 N was applied to the position of   2.5 m 
and   1 m. These correspond to cases 3 and 4 in Table 3.

To obtain the responses of the BEM, Eqs. (18) and (19) were 
concatenated to form a linear algebraic equation. These values were 
then used to obtain the deflection in the domain and the differential 
terms of the deflection using Eq. (17). The differential values of the 
calculated deflection were used to calculate the bending and torsional 
moments using Eqs. (3) through (5). For comparison, the FEM 
responses were calculated through an analysis performed using the 
commercial structural analysis software Abaqus. The finite elements, 
which are S8R secondary shell elements, were calculated under the 
same boundary condition and load.

3.2 Analysis Results
The deflection, bending moment, and torsional moment of the plate 

were calculated as response results of the BEM and FEM. The 
response results for cases 1 and 2 are illustrated in Figs. 4 and 5, 
respectively.

Figs. 4 and 5 show that the FEM results are similar to the BEM results 
for both bending and torsional moments. In the case of the torsional 
moment, the signs of the FEM results and the BEM results are different 
because of the difference in the predetermined sign convention for the 
torsional moment. To provide a closer comparison in case 1, the results 
were compared at   0.75 m, where the fluctuation of values is large in 

Case Model geometry Boundary condition Load
case 1 Square model C

DIS (   [N])
case 2 Triangular model SS
case 3 Square model C and F CON (      )
case 4 Triangular model C and F CON (      )

0.5 1 1.5 2 2.5
x[m]

0.2

0.4

0.6

0.8

0.5

1

1.5

2

10-5

(a) Deflection (FEM) (b) Deflection (BEM)

y[
m

]

(c) Bending moment   (FEM) (d) Bending moment   (BEM)
Fig. 4 Comparison between FEM and BEM results (Case 1)

Table 3 Boundary conditions and loads (C: Clamped, SS: Simply supported, F: Free, CON: Concentrated unit load, DIS: Distributed load)



A Study on Plate Bending Analysis Using Boundary Element Method 237

y[
m

]

(e) Bending moment  (FEM) (f) Bending moment  (BEM)

y[
m

]

(g) Twisting moment  (FEM) (h) Twisting moment  (BEM)
Fig. 4 Comparison between FEM and BEM results (Case 1) (Continuation)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x[m]

0.5

1

1.5

2

1

2

3

4

5

6
10-4

(a) Deflection (FEM) (b) Deflection (BEM)

y[
m

]

(c) Bending moment   (FEM) (d) Bending moment   (BEM)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x[m]

0.5

1

1.5

2

-2

-1

0

1

2

3

4

(e) Bending moment  (FEM) (f) Bending moment  (BEM)

y[
m

]

(g) Twisting moment  (FEM) (h) Twisting moment  (BEM)
Fig. 5 Comparison between FEM and BEM results (Case 2)
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terms of the deflection and bending moment, and at   1.5 m for the 
torsional moment. The comparison results are shown in Fig. 6. 
Similarly, in case 2, the results were compared at locations with large 
fluctuations, and the results are shown in Fig. 7. Here, the deflection and 
bending moments were compared at x = 2.5 m, and the torsional 
moment was compared at  0.3 m.

In case 1, the deflection in the BEM result shows slightly smaller 

responses in general than that in the FEM result. As shown, the 
bending and torsional moments coincide almost exactly. In case 2, it 
can be seen that the deflection, bending moment, and torsional 
moment all coincide almost exactly. Here, torsional moments were 
compared by matching signs.

The FEM and BEM response results for cases 3 and 4 are shown in 
Figs. 8 and 9, respectively.

0 0.5 1 1.5 2 2.5 3
y[m]

0

0.5

1

1.5

2

2.5 10-5

FEM
BEM

0 0.5 1 1.5 2 2.5 3
x[m]

-1

-0.5

0

0.5
FEM
BEM

(a) Deflection (b) Bending moment 

0 0.5 1 1.5 2 2.5 3
x[m]

-0.5

0

0.5

1
FEM
BEM

0 0.5 1 1.5 2 2.5 3
x[m]

-0.2

0

0.2
FEM
BEM

(c) Bending moment  (d) Twisting moment  
Fig. 6 Comparison between FEM and BEM results along the path (Case 1)

0 0.5 1 1.5 2 2.5
y[m]

0

2

4

6

8 10-4

FEM
BEM

(a) Deflection (b) Bending moment 

0 0.5 1 1.5 2 2.5
y[m]

-2

0

2

4

6
FEM
BEM

0 1 2 3 4 5
x[m]

-1.5

-1

-0.5

0

0.5

1

1.5
FEM
BEM

(c) Bending moment  (d) Twisting moment 

Fig. 7 Comparison between FEM and BEM results along the path (Case 2)



y[
m

]

(a) Deflection (FEM) (b) Deflection (BEM)

0.5 1 1.5 2 2.5
x[m]

0.2

0.4

0.6

0.8

-0.1

0

0.1

0.2

0.3

(c) Bending moment   (FEM) (d) Bending moment   (BEM)

0.5 1 1.5 2 2.5
x[m]

0.2

0.4

0.6

0.8

-0.2

0

0.2

(e) Bending moment  (FEM) (f) Bending moment  (BEM)

y[
m

]

(g) Twisting moment  (FEM) (h) Twisting moment  (BEM)

Fig. 8 Comparison between FEM and BEM results (Case 3)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x[m]

0.5

1

1.5

2

0

0.5

1

1.5

2

2.5
10-5

(a) Deflection (FEM) (b) Deflection (BEM)

y[
m

]

(c) Bending moment   (FEM) (d) Bending moment   (BEM)

Fig. 9 Comparison between FEM and BEM results (Case 4)
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As shown in Figs. 8 and 9, the deflection, bending moment, and 
torsional moment results obtained using the FEM and BEM are quite 
similar. Furthermore, comparing the responses of cases 3 and 4 also 
confirms that the contours of the responses are similar because the 
bottom edge is a free boundary and the remaining edges have a similar 
situation involving a fixed support. In case 3, the torsional moment 
increases to become sufficiently large and then decreases as it 
approaches the boundaries, except for the lower boundary. However, 

in case 4, it does not become small enough as it approaches the 
boundary, and has its maximum and minimum values at the boundary. 
It seems that this difference appears because the boundaries other than 
the lower boundary of case 4 are relatively closer, compared to those in 
case 3, to the point where the concentrated unit load is applied. As in 
cases 1 and 2, the signs of the torsional moment of the FEM and BEM 
results are calculated differently owing to the difference in the sign 
convention.

y[
m

]

(e) Bending moment  (FEM) (f) Bending moment  (BEM)

y[
m

]

(g) Twisting moment  (FEM) (h) Twisting moment  (BEM)
Fig. 9 Comparison between FEM and BEM results (Case 4) (Continuation)

0 0.2 0.4 0.6 0.8 1
y[m]

0

0.5

1

1.5

2 10-5

FEM
BEM

0 0.2 0.4 0.6 0.8 1
y[m]

-0.2

0

0.2

0.4

0.6
FEM
BEM

(a) Deflection (b) Bending moment 

0 0.2 0.4 0.6 0.8 1
y[m]

-0.4

-0.2

0

0.2

0.4

0.6
FEM
BEM

(c) Bending moment  (d) Twisting moment 

Fig. 10 Comparison between FEM and BEM results along the path (Case 3)
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For a more in-depth comparison of cases 3 and 4, a comparison 
according to the path is shown in Figs. 10 and 11. As in cases 1 and 2, 
these cases were compared at locations with large fluctuations. In case 
3, deflection and bending moments were campared at   0.75 m, and 
the torsional moment was campared at   1.5 m. In case 4, deflection 
and bending moments were campared at   2.5 m, and the torsional 
moment was campared at  0.3 m.

The results for both cases 3 and 4 show that the BEM results are very 
similar to the FEM results. Moreover, it can be seen that the value of 
the bending moment changes significantly at the location at which the 
concentrated unit load is applied.

4. Conclusions

This study proposed a numerical methodology for level ice- 
structure interaction analysis for application to long-term fatigue 
analysis of ships operating in polar waters. First, the behavior of level 
ice was applied to the plate bending problem. In addition, a governing 
equation for plate behavior was established by introducing plate 
theory. To solve the governing equation, the BEM, which has high 
accuracy and a low computational cost, was introduced. The BEM 
formulation of the governing equation was also performed. BEM and 
FEM analyses were conducted under various boundary conditions and 
loads for simple square and triangular models, and the results were 
compared. Based on the above analysis results, the following 
conclusions can be drawn.

(1) An analysis method with a low computational cost is needed for 
long-term fatigue analysis of ships operating in polar waters in contact 

with level ice. A numerical methodology using the BEM was proposed 
for this analysis.

(2) The governing equation of the plate theory was formulated using 
the BEM after applying the behavior of level ice to the plate problem.

(3) The BEM results were compared with the analysis results of 
Abaqus, a commercial finite element structural analysis program, to 
verify the accuracy of the BEM methodology.

(4) Both the analysis results performed under distributed load at 
fixed and simply supported boundaries and the analysis results under 
concentrated unit load at the boundaries including the free boundary 
were similar to the analysis results of Abaqus, a commercial finite 
element structural analysis program.

(5) The proposed method showed results that were sufficiently 
similar to the finite element results, using very few boundary elements 
compared to the number of finite elements. Therefore, this method is 
highly suitable in terms of computational cost and accuracy for 
application to many flat bending analysis scenarios for fatigue caused 
by ice load.

(6) It is necessary to assume the condition of an elastic foundation 
because the level ice at sea is under buoyancy. Therefore, we plan to 
conduct additional research considering buoyancy.

(7) Furthermore, we will perform fatigue life evaluation by 
conducting long-term fatigue analysis using the BEM methodology 
after buoyancy is added.
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Fig. 11 Comparison between FEM and BEM results along the path (Case 4)
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