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Abstract : The present study deals with an approximate integral equation approach to finite deflection of elastic
plates with arbitrary plane form. An integral formulation leads to a system of boundary integral equations involving
values of deflection, slope, bending moment and transverse shear force along the edge. The basic principles of the
development of boundary element technique are reviewed. A computer program for solving for stresses and deflec-
tions in a isotropic, homogeneous, linear and elastic bending plate is developed. The fundamental solution of
deflection and moment is employed in this program. The deflections and moments are assumed constant within the
quadrilateral element. Numerical solutions for sample problems, obtained by the direct boundary element method,
are presented and results are compared with known solutions.
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1. Introduction

The boundary element method has become an impor-
tant analysis tool for obtaining approximate solutions of
engineering problems. It is a relatively flexible and
diverse method that has a number of distinctive features
which make it superior to most other methods. One of
the main attractions of boundary element methods is the
ease with which they can be applied to problems involv-
ing geometrically complicated shapes. This study deals
with the boundary integral theory of plate bending and
some of its applications using boundary eclements. A
large number of research works [3, 5, 6, 8, 10, 13] has
been reported in the area of boundary element of plate-
flexure problems such as plate vibrations, large displace-
ment analysis, stress concentration problems, plates on
etastic foundations, sandwich plate bending application etc.
The first application of boundary element method to plate
bending problems appears to be due to Jawon and Maiti
[7]. They used an indirect formulation in which the cor-
ners were rounded off to avoid numerical instabilities.
Maiti and Chakraborty [9] analyzed simply supported
polygonal plates subjected to uniform loading including
the effect of corners. Alterio and Sikarskie [1] proposed
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the use of solutions other than Green's function in an
unbounded domain. These formulations make use of
source distribution densities and not the natural variables
of plate flexure problems. One of the early proposals for
treating plate bending problems by direct boundary ele-
ment method is due to Stern [12]. He considered a direct
treatment for the general case of finite plates with arbi-
trary boundary conditions. Paris and Leon [11] proposed
an alternative procedure in which the biharmonic equa-
tion was uncoupled into two harmonic equations, the
problem thus being reduced to the integral treatment of
Posson’s equation. However, their method involves domain
discretization. Recently, Ameen [2] has solved the plate
problem using the direct method. The elements are quad-
rilateral of the boundary which are determined at corner
point. This study is primarily concerned with the direct
method in plate problems. The method hinges here on the
Rayleigh-Green identity, which is the analogue of Green’s
second identity and Betti's theorem. The governing equa-
tions are derived starting from the equations of theory of
elasticity. The reciprocal theorem due to Betti is used to
arrive at the integral equation formulation of the problem.
The complete set of fundamental solutions corresponding
to a concentrated load and a concentrated couple in rect-
angular Cartesian coordinates which is not very conve-
nient for general polygonal plates. Numerical solutions for
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sample problems, obtained by the direct boundary element
method, are presented.

2. Governing Differential Equations

The middle plane of the undeformed plate is the xi,
x; is the deflection of the middle plane in the x; direc-
tion as indicated in Fig. 1. The applied forces are per
unit area inside the plate and per unit of length along
I'. The thickness of the plate ish h. The governing dif-
ferential equation of a plate with elastic modulus E and
Poisson’s ratio [L can be expressed in terms of the lat-
eral displacemenet of the plate middie plane as

1 .
Vwin, x) = 5pn,x) in Q M
where V* = i;+2—284—2+-—4 in x; and x,,
ax] 3xl aX2 axZ
Eh’

" 12(1= 47 is the flexural rigidity of the plate
and p(x;, xp) is the vertical load. Since Eq.(1) is a
fourth order partial differential equation in w, there must
be four boundary variables at any boundary point.

Essential boundary conditions are
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Fig. 1. Flat plate and coordinate system.

M, = A_/I,,, on I,

where 9n(= 8_v_v) and 9,,,(= a—w) are the normal and

tangential components of slope fo the boundary. At a
point (x;, x;) of the boundary I" with the outward unit
normal »n = [n, n,] and the tangent ¢ = [#,, ;] four quan-
tities are defined.

3. Boundary Integral Formulations

This formulation is based on Green’s theorem. Consider
a thin plate whose interior is represented by €2 and the
boundary by TI' subjected to two distinct sets of load-
ings. Let w, 8;, M; V and p indicate the transverse
deflection of the plate, the slopes, the moments, the
shears and the surface loading on the plate respectively
corresponding to the given set of loading. Let w’, 6,
M/, V" and p" represent the set of corresponding quan-
tities due to the second set of loading.

Then, we consider the bilinear form which is symmet-
ric with respect to w and w" defined as

B(w,w') = [(VVw'w +(1-p)Lw,w))d2 ()

L(w, w") denotes a differential operator which is given
by
Fw Iw  FwIFw TWIW

L(w,w) =2 - -5 =
( ) axlaXZaxlaXZ ale aZXZ azxZ 82)(:1 (3)

It is well known that Green’s second identity for the
biharmonic equation such as Eq. (1) can be expressed as

J‘Vzwvzw*d.Q = IW*V4dQ

Q

v aw *8V2w)
+'f ( on ar S
a_w:
where oJn denotes the normal derivative on the-

boundary. Integrating by parts Eq. (2) repeatedly with
respect to w" and using Green’s identity, we can obtain
(4, 12]

*aMnt(w) aW

B(w, w')= [w' V'wd@ +{lw' =5 = — == M, (w)
—w*‘iZTW—)]dm jr o.%[w*M,,,(w)}dF (5)

The boundary torsional moment M, is combined with
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the boundary shear g to obtain the so called Kirchhoff's
shear as

3M nt
ot

V=g+ (6)
J
where Jr denotes the tangential derivative on the
boundary and g is the boundary shear force per unit
length. In Eq. (5) M, and M,, are the differential oper-
ators defined on the plate boundary as follows:
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M, = -V+(1-pn —

+(1-p)(n 8x1+ W

—2n1n2m) (7)
F &

M, =—-(1- 1| — — —

= u)(nn(xf 8x§)

+(n —n%)%axz) ®)

It notes that when the boundary is smooth the last
integral in Eq. (6) vanishes and this equation results in
the so called Rayleigh-Green identity. If the boundary
has cn comers, corner force A, and the coresponding
deflection w,, we must add the following term

[Siw' M, )dr = 3 [w)A,) ©
ot oy

to the right hand side of Eq. (5) and calculate the dis-
continuity jump. Using the symmetric property of the
bilinear form B(w, w*) with respect to the arguments,
we can derive

L(w V'w —w V'w)dQ

= ( M Yy w)a’l" (10)
T on

As the deflection function w™ we shall use the funda-
mental solution to Eq.(1), which is governed by

Vwi (& m = A ) (11)

for an infinite plate made of the same material as that
of the plate to be analyzed. Here we denote by { and 7
arbitrary points in the infinite domain and by A({, 1)
the Dirac delta function. Substitution of Eq. (1) and
(11) into Eq. (10) and use of the property of the Dirac
delta function lead to

w(n) + J(M,'6,+ V'w)dl+ 3, 4w,
c=1

= [pwda+[(M,6, +vwHar+ S aw. (12
c=1

Notice that we have now two unknowns per node,
i.e., displacement w or effective shear force V and rota-
tion 8 or moment M. Hence we need another equation
to solve the problem. This equation is given by finding
the derivative of Eq. (1) with respect to the normal,
which gives

6.+ [(M 6,+ V,w)dI'+ 3 Al w = [pw; dQ
c=1
Q
+[(M,0; + Vw)dr+ ¥ Aw. (13)
r c=1

where the following notations are used:

ow _ 6, ﬂ_M;‘, ﬂ:?
on on n

A _ 4l Wy

on on

4. Fundamental solutions

It is well known that the fundamental solution w" sat-
isfying Eq.(11) is given by

wi(n) = 8—71_3r21nr (14)

In the above, w" represents the transverse displace-
ment at the field point 7 due to a unit load applied at
the source point { and r represents the distance between
the field point 77 and the source point . The corre-
sponding slope 0, along a direction n can be obtained
as 8; = w, . Thus

s 1

6, = 8 )D(l +21nr)r— (15)

The boundary shear is obtained as
* — 1 &

— 16
2nron (16)
Hence, the Kirchhoff shear is
. « oM,
V =g +—=
17
1 (9rc9r ar
- _M(zﬂl _#)( azat))% {an

The fundamental solution due to a unit moment is
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given by [4]

w; = ——rlnr (18)

The above solution bar w# represents the deflection at
a field point 7 due to a unit moment applied at the
source point ¢ with the moment vector directed along
x;.. The slope at a boundary point whose outward unit
normal vector »n is obtained as

owi _ 1
on _ 4nD

o =

(njlnr+r,r,) (19)

The bending moment bar M, at the field point can be
obtained as

*

M = [ = ) (2ran =~ 2r,r,r) + (14 )7,
r (20)

The boundary shear is

Vi = QU —pyrir, -3+ 1) + 6 -2m)rr,
Aar
F4(1 = pyrariti=8(1 = )i arir.] @1)

In the case of a uniformly distributed load, the
domain integral present in Eq. (2) is

* _ p _ 3
jﬂpw do = —lzgmjr(mnr 1)7’r,dl (22)
" _ D 2 _
pr,- dQ = 32”D_[1_r n(Inr(4;, + 2r,r))
-GAik + %r,kr,,.))dr 23)

5. Boundary Discretization

Now, since the source point and the field point never
coincide, all the above integrals are nonsingular and
hence can easily be evaluated numerically. The bound-
ary of the domain is discretised into a number of
boundary elements. The transverse displacement, the
normal boundary slope, the shear, the bending moment
and the boundary geometry are all interpolated by using
chosen interpolation polynomials. Supposing that for the
discretization of the plate, n, elements on I" are consid-
ered and applying the Eq. (12) and (13) on the whole
boundary, we get as

cw(nm) +3, [(M) 6,+ V'w—M,0, — Vw' )T+ 3 Aw,

e=]I- e=1

= 3 [pw'a+ 3 A, 24)
e=1 =

and
cw(n) +3, [(M; 8,+V,w—M,6, - Vw,)dT
e=1 r

* e

+YAlw. =Y [pwiaa+ c_z"IAcfvf (25)

c=1 c=1

The interior of the domain is discretized into panel, at
the n, nodal points of which we define the value w and
that of the equivalent transverse load. By performing a
static condensation for a domane with s, nodes with
simple mathematical manipulations, we may write with
the Eq. (24) and (25) in matrix form as

(HI{D} = [GH{P}+{F} (26)

h1,1 h1,2 hl,2n,
hyt hay oo
where [Hl=| hani Ranz  Bopas |

h2n,+ 1,1 h2n¢+ 1,2 I’lz,,d. 1,2n,

h2n, +cn, 1]22/1E +cn, th'le +cn,2n,

81,1 &1,2 81,20, +cn
82.1 g2,2 gZ,ZnE+cn
[G]= an,_l anEVZ . anev2ne+ cn >

8an,+1,1 82n,41,2 - 825, 41,20, 4 cn

8on, +en 1820, +cn,2 " &2n, +cn, 2n, +cn

{D} = {w191w292“‘wn39n(}Ta
{P} = {ViIM\V,M,..V, M, A\A,..A}

{F} = {fihfdn}”

[H] is 2n,+cn by 2n, rectangular matrix and [G] is
2n, + cn by 2n, + cn square matrices whose coefficients
stem from the curvilinear integrals of Eq. (12) and (13).
{F} is a column vector whose n, components are the
concentrated loads equivalent to the transverse load per
unit area, at the n, nodal points inside the domain £2
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After reordering the Eq. (26), we obtain the final form
as

[Al{X} = {B} 27

where [A] is a fully populated rectangular matrix and
{X} is formed by the unknown displacemenets and
slopes. The contributions of the prescribed values are
included in vector {B}. Eq. (27) may now be solved to
vield all remaining unknown displacemenets and slopes
on the boundary.

6. Numerical Implementation

To investigate the validity of the proposed equations
and calculation procedure, two distinct problems per-
taining to rectangular plates are considered.

The whole plate edge is either clamped or simply
supported. In each case Poisson’s ratio [ is taken to be
0.3 and all our results pertain to a rectangular plate
loaded in a state of uniformly distributed load of 10 psi.
Due to the symmetry of the problem only one quarter
of the plate is considered in the analysis. The boundary
of the quarter plate is discretized into 12 elements and
we compute the moments and slopes on all boundaries
of plate. Since we will verify numerical solutions of
this computational model against analytical solutions,
only moment with the simply supported boundary con-
dition was considered in the x—y coordinate system. The
Fourier series solution M, is obtained as

M (x,y)
- 1_6£ 2 - (m/a)2+u(n/b)2

.. max . om
4 sSin Sll’lﬂ

nt o mnl(m/a) +(n/b)') @ b
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Fig. 2. Moment distributions on the vertical boundary for a
clamped rectangular plate subjected to uniform load.
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Fig. 3. Slope distributions on the side boundary for a simply
supported rectangular plate subjected to uniform load.

Comparing the results with the analytical solution,
maximum moment at the center of vertical boundary is
found to be within 2.3 percentage of the analytical solu-
tion. Maximum slope, which occur at the center of ver-
tical boundary, gives 2.6 percentage error for this
dicretization. The numerical results from the boundary
element method show good agreements with the exact
solutions as shown in in Fig. 2 and 3. The boundary
element method produces results that are much more
accurate for the solution of plates.

7. Conclusions

The boundary element method can be applied to solve
finite deflection of elastic bending plate accurately. Inte-
gral equation formulations based on the von Karman
theory has been described. This formulation gives a
coupled system of field equations which is reduced to
an uncoupled system for the latter. For the problems
dealing with the large domains and loaded in a rela-
tively small area, the boundary element method offers a
very convenient and accurate method for analysis. The
convenience is in the input data preparation. The
method is applicable to various problems in the area of
foundation engineering where large mass of soil
medium are to be considered.
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