• 제목/요약/키워드: Boundary value problems

검색결과 368건 처리시간 0.02초

SOLVABILITY OF MULTI-POINT BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE

  • Liu, Yuji;Liu, Xingyuan
    • 충청수학회지
    • /
    • 제25권3호
    • /
    • pp.425-443
    • /
    • 2012
  • Sufficient conditions for the existence of at least one solution of a class of multi-point boundary value problems of the fractional differential equations at resonance are established. The main theorem generalizes and improves those ones in [Liu, B., Solvability of multi-point boundary value problems at resonance(II), Appl. Math. Comput., 136(2003)353-377], see Remark 2.3. An example is presented to illustrate the main results.

MULTIPLE POSITIVE SOLUTIONS OF INTEGRAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Liu, Xiping;Jin, Jingfu;Jia, Mei
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.305-320
    • /
    • 2012
  • In this paper, we study a class of integral boundary value problems for fractional differential equations. By using some fixed point theorems, the results of existence of at least three positive solutions for the boundary value problems are obtained.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

Numerical Solutions of Third-Order Boundary Value Problems associated with Draining and Coating Flows

  • Ahmed, Jishan
    • Kyungpook Mathematical Journal
    • /
    • 제57권4호
    • /
    • pp.651-665
    • /
    • 2017
  • Some computational fluid dynamics problems concerning the thin films flow of viscous fluid with a free surface and draining or coating fluid-flow problems can be delineated by third-order ordinary differential equations. In this paper, the aim is to introduce the numerical solutions of the boundary value problems of such equations by variational iteration method. In this paper, it is shown that the third-order boundary value problems can be written as a system of integral equations, which can be solved by using the variational iteration method. These solutions are gleaned in terms of convergent series. Numerical examples are given to depict the method and their convergence.

ON THE BOUNDARY VALUE PROBLEMS FOR LOADED DIFFERENTIAL EQUATIONS

  • Dzhenaliev, Muvasharkhan T.
    • 대한수학회지
    • /
    • 제37권6호
    • /
    • pp.1031-1042
    • /
    • 2000
  • The equations prescribed in Ω⊂R(sup)n are called loaded, if they contain some operations of the traces of desired solution on manifolds (of dimension which is strongly less than n) from closure Ω. These equations result from approximations of nonlinear equations by linear ones, in the problems of optimal control when the control when the control actions depends on a part of independent variables, in investigations of the inverse problems and so on. In present work we study the nonlocal boundary value problems for first-order loaded differential operator equations. Criterion of unique solvability is established. We illustrate the obtained results by examples.

  • PDF

Existence and Uniqueness Theorems for Certain Fourth-order Boundary Value Problems

  • Minghe, Pei;Chang, Sung Kag
    • Kyungpook Mathematical Journal
    • /
    • 제45권3호
    • /
    • pp.349-356
    • /
    • 2005
  • In this paper, by using the Leray-Schauder continuation theorem and Wirtinger-type inequalities, we establish the existence and uniqueness theorems for two-point boundary value problems of a certain class of fourth-order nonlinear differential equations.

  • PDF

MODIFIED NUMEROV METHOD FOR SOLVING SYSTEM OF SECOND-ORDER BOUNDARY-VALUE PROBLEMS

  • Al-Said, Eisa A.;Noor, Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.129-136
    • /
    • 2001
  • We introduce and discuss a new numerical method for solving system of second order boundary value problems, where the solution is required to satisfy some extra continuity conditions on the subintervals in addition to the usual boundary conditions. We show that the present method gives approximations which are better than that produced by other collocation, finite difference and spline methods. Numerical example is presented to illustrate the applicability of the new method. AMS Mathematics Subject Classification : 65L12, 49J40.

AN INITIAL VALUE TECHNIQUE FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH A SMALL NEGATIVE SHIFT

  • Rao, R. Nageshwar;Chakravarthy, P. Pramod
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.131-145
    • /
    • 2013
  • In this paper, we present an initial value technique for solving singularly perturbed differential difference equations with a boundary layer at one end point. Taylor's series is used to tackle the terms containing shift provided the shift is of small order of singular perturbation parameter and obtained a singularly perturbed boundary value problem. This singularly perturbed boundary value problem is replaced by a pair of initial value problems. Classical fourth order Runge-Kutta method is used to solve these initial value problems. The effect of small shift on the boundary layer solution in both the cases, i.e., the boundary layer on the left side as well as the right side is discussed by considering numerical experiments. Several numerical examples are solved to demonstate the applicability of the method.