• Title/Summary/Keyword: Boundary element method (BEM)

Search Result 321, Processing Time 0.027 seconds

Iterative coupling of precise integration FEM and TD-BEM for elastodynamic analysis

  • Lei, Weidong;Liu, Chun;Qin, Xiaofei;Chen, Rui
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.317-326
    • /
    • 2018
  • The iterative decomposition coupling formulation of the precise integration finite element method (FEM) and the time domain boundary element method (TD-BEM) is presented for elstodynamic problems. In the formulation, the FEM node and the BEM node are not required to be coincident on the common interface between FEM and BEM sub-domains, therefore, the FEM and BEM are independently discretized. The force and displacement converting matrices are used to transfer data between FEM and BEM nodes on the common interface between the FEM and BEM sub-domains, to renew the nodal variables in the process of the iterations for the un-coincident FEM node and BEM node. The iterative coupling formulation for elastodynamics in current paper is of high modeling accuracy, due to the semi-analytical solution incorporated in the precise integration finite element method. The decomposition coupling formulation for elastodynamics is verified by examples of a cantilever bar under a Heaviside-type force and a harmonic load.

A Comparative study of Finite Element Method and Boundary Element Method Analysis result of Cantilever Beam model by applying Orthotropic Material Properties (직교 이방성 재료 물성이 적용된 cantilever beam 형상의 FEM과 BEM에 의한 해석 결과에 대한 비교 연구)

  • Kim, Dong-Eun;Hwang, Young-Jin;Lee, Seok-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.730-735
    • /
    • 2007
  • This study is a comparison of the results of the orthropic material analysis at cantilever beam model using boundary element(BEM) method and finite element method(FEM). The program with the orthotropic material analysis was developed and applied to the examples in order to evaluate the accuracy of the programs. The examples shows that the results of the BEM is a good agreement with the ABAQUS results.

  • PDF

A Study of Stress Analysis of Multi-Grain Orthotropic Material by BEM (경계 요소법에 의한 직교 이방성 다결정 재료의 응력해석에 관한 연구)

  • Kim, Dong-Eun;Lee, Sang-Hun;Jeong, Il-Jung;Lee, Seok-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.127-133
    • /
    • 2008
  • As the application of the MEMS parts increases, the structural safety of MEMS appears importantly. A lot of MEMS parts are made by a multi-grain silicon wafer, which is an orthotropic material. Moreover directions of the materials on each grain are distributed randomly. The stress analysis for the multi-grain is important factor in order to apply the MEMS parts to industrial applications. The finite element method (FEM) is commonly used by a stress analysis method but the boundary element method (BEM) is known as the result of the BEM is more accurate than that of the FEM since the fundamental solution are used. In this study, we derived the boundary integration equation for the orthotropic material by applying fundamental solutions with complex variables. The multi-region analysis procedure for the BEM and the multi-grain generation procedure by a random process technique are developed in order to apply the analysis of the multi-grain orthotropic material. The discontinuous element is used in order to remove the comer problem in the BEM. The results of the present method are compared with those of the finite element method in order to verify the present procedure.

Algorithm and Implementation of Fast Multipole Boundary Element Method with Theoretical Analysis for Two-Dimensional Heat Conduction Problems (2차원 열전도 문제에 대한 Fast Multipole 경계요소법의 이론과 실행 알고리즘의 분석)

  • Choi, Chang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.441-448
    • /
    • 2013
  • This paper presents the fast multipole boundary element method (FM-BEM) as a new BEM solution methodology that overcomes many disadvantages of conventional BEM. In conventional BEM, large-scale problems cannot be treated easily because the computation time increases rapidly with an increase in the number of boundary elements owing to the dense coefficient matrix. Analysis results are obtained to compare FM-BEM with conventional BEM in terms of computation time and accuracy for a simple two-dimensional steady-state heat conduction problem. It is confirmed that the FM-BEM solution methodology greatly enhances the computation speed while maintaining solution accuracy similar to that of conventional BEM. As a result, the theory and implementation algorithm of FM-BEM are discussed in this study.

Influence of Modeling Errors in the Boundary Element Analysis of EEG Forward Problems upon the Solution Accuracy

  • Kim, Do-Won;Jung, Young-Jin;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2009
  • Accurate electroencephalography (EEG) forward calculation is of importance for the accurate estimation of neuronal electrical sources. Conventional studies concerning the EEG forward problems have investigated various factors influencing the forward solution accuracy, e.g. tissue conductivity values in head compartments, anisotropic conductivity distribution of a head model, tessellation patterns of boundary element models, the number of elements used for boundary/finite element method (BEM/FEM), and so on. In the present paper, we investigated the influence of modeling errors in the boundary element volume conductor models upon the accuracy of the EEG forward solutions. From our simulation results, we could confirm that accurate construction of boundary element models is one of the key factors in obtaining accurate EEG forward solutions from BEM. Among three boundaries (scalp, outer skull, and inner skull boundary), the solution errors originated from the modeling error in the scalp boundary were most significant. We found that the nonuniform error distribution on the scalp surface is closely related to the electrode configuration and the error distributions on the outer and inner skull boundaries have statistically meaningful similarity to the curvature distributions of the boundary surfaces. Our simulation results also demonstrated that the accumulation of small modeling errors could lead to considerable errors in the EEG source localization. It is expected that our finding can be a useful reference in generating boundary element head models.

Application of the Boundary Element Method to Analysis of Assembled plate structures (조립판 구조물 해석을 위한 경계요소법의 적용)

  • 권택진;서일교;이동우;김도훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.121-128
    • /
    • 1997
  • The Boundary Element Method(BEM) has many advantages. Nevertheless the applicability of BEM to structural analysis is seemed to be behind the other methods. This study presents the application of the BEM for analysis of assembled plate structures which is light weight and has a great loading capacity. Firstly, we formulate the boundary integral equation of the single plate, using the biharmonic fundamental solution for plate bending and internal force problems. Nextly, each plates are assembled on 3-dimensional space. In this process, the boundary conditions on assemble line are used. To verify the objectivity and universal validity of analysis by BEM, the results of BEM was compared to that of SAP90 by using FEM.

  • PDF

Analysis of the Stresses for Hydraulic Actuator Cylinders using Boundary Element Method (경계요소법을 이용한 유압 엑츄에이터 실린더의 응력해석)

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.104-109
    • /
    • 2001
  • The stress distributions of hydranlic actuator cylinder tube acting in uniform inner pressure were analysed by the boundary element method(BEM). STKM13C tube was utilized for machine structural purposes model, its inner radius was 100 mm and outer radius was 140 mm. Axial length was semi-infinite and the isoparametric element of BEM was used. Radial and tangential stresses are maximum(-20.3 MPa and 52 MPa) at the inner radius and the minimum at the outer radius of the hydraulic actuator cylinders for an industrial systems. Stress diminution ratio was about 0.6 MPa/mm. And then coincidence between the simulation techniques as exact results(Lame' equation) and finite element method(FEM) is found to be fairly good, showing that the proposed analysis by BEM is reliable.

  • PDF

REMOVAL OF HYPERSINGULARITY IN A DIRECT BEM FORMULATION

  • Lee, BongJu
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.425-440
    • /
    • 2010
  • Using Green's theorem, elliptic boundary value problems can be converted to boundary integral equations. A numerical methods for boundary integral equations are boundary elementary method(BEM). BEM has advantages over finite element method(FEM) whenever the fundamental solutions are known. Helmholtz type equations arise naturally in many physical applications. In a boundary integral formulation for the exterior Neumann there occurs a hypersingular operator which exhibits a strong singularity like $\frac{1}{|x-y|^3}$ and hence is not an integrable function. In this paper we are going to remove this hypersingularity by reducing the regularity of test functions.

Analysis of Waveguide Junction in H-Plane Using Finite Element-Boundary Element Method (혼합 유한요소법을 사용한 H-평면의 도파관 접합 해석)

  • 정진교;천창열;정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.666-672
    • /
    • 1994
  • An H-Plane waveguide component with arbitrary shape is analyzed using finite element method(FEM) Cooperated with boundary element method(BEM). For the application of BEM in the waveguide structure, a ray representation of the waveguide Green's function is used. This technique is applied to the analysis of the waveguide inductive junction. The results are compared with the results of the mode matching technique. The comparison shows good agreement.

Exterior Acoustic Holography Reconstruction of a Tuning Fork using Inverse Non-singular BEM (역 비고유치 BEM을 사용한 소리 굽쇠의 외부 음향 홀로그래픽 재현)

  • Jarng, Soon-Suck;Lee, Je-Hyeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.335.2-335
    • /
    • 2002
  • Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near field pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. (omitted)

  • PDF