최근 지질학적 증거, 실내 및 현장 실험을 통해 복잡한 형태의 분할된 수압파쇄균열이 암반에서 자주 관찰되고 있다. 이러한 수압파쇄균열의 분할은 균열간의 기계적 상호작용을 유발하며 균열의 폭이나 측정되는 압력에 상당한 영향을 미칠 것으로 예상된다. 따라서 본 연구는 균열간의 상호작용을 정량화하기 위하여 수압파쇄에 의해 다중으로 분할된 총변위를 경계병치법을 사용하여 계산하였다. 또한 기존의 경계병치법을 보정하여 정확한 균열의 상단과 하단 변위를 평가하였으며 유한요소법과의 비교를 통해 제시된 기법의 신뢰성을 확인하였다.
2차원 포텐셜 문제를 해석하기 위해 고차의 르장드르 형상함수에 기초를 둔 p-수렴 경계요소법이 제안되었다. p-수렴 경계요소법은 종래의 경계요소법에서 사용되는 형상함수와 성질이 다른 르장드르 다항식을 형상함수로 사용한다. p-수렴 유한요소법과 마찬가지로 고차의 형상함수에 따른 절점의 위치가 경계상에서 정해지지 않는다. 따라서 형상함수가 증가함에 따라 선형방정식을 구성하기 위한 수단으로 선점법을 이용하였다. p-수렴 경계요소법에서 선점법은 비대칭 계층적 선점법과 대칭 비계층적 선점법을 선택하여 수치해석을 수행하였다. 선택점들은 형상함수가 증가함에 따라 증가하는 성질을 나타내며 계층적 또는 대칭적으로 선택될 수 있다. p-수렴 경계요소법에서 나타나는 특이 적분항을 계산하기 위해 special numeric quadrature technique와 semi-analytical integration technique를 사용하였다. 사각모서리부에서 특이성을 가지는 L-형 영역문제를 해석한 결과 적은 수의 자유도에서 기존문헌의 결과와 차이가 거의 없는 정도인 $10^{-2}%$단위 이하의 정확도를 보여주었다. 또한 같은 조건에서는 대칭형 선점의 위치를 이용해 계산한 값이 가장 높은 정확도를 보여주었다.
본 논문은 근거리 음장 측정 자료로부터 원거리 음장 예측을 위한 기술에 대한 것이다. 음원의 음장 분포 특성은 원거리에서 측정된 자료의 해석으로 이루어지는 것이 일반적 방법이나, 음향수조 또는 무향실과 같은 제한된 공간에서는 근거리 영역에서 측정이 이루어지는 경우가 발생한다. 따라서 근거리 영역에서의 측정으로부터 원거리 음장이 예측되어야 한다. 이 경우 음원을 둘러싼 근거리 음장의 측정점수는 원거리 음장 예측치의 정확도와 자료 처리의 계산량과 상관된다. 기존 연구 결과는 최적측정점수는 음원의 kL에 비례하고 음원의 기하학적 형태 또는 지향특성에 따라 kL의 의존성이 다르게 나타난다고 되어 있으나 정확한 기준이 없다. 따라서 본 논문에서는 최적측정지점수에 대한 기준을 유도하기 위해 Helmholtz 적분식과 Green 함수를 근간으로 한 원거리 음장 예측 기술인 경계배치법(Boundary Collocation Method)을 분석하여 최적측정점수는 kL이 증가함에 따라 0.54kL로 수렴한다는 결과를 얻었다. 기존의 연구 결과 보다 최적측정점수를 1/2 정도로 줄였다.
수압파쇄시 다중으로 분할된 균열의 생성은 자주 발생되는 현상이며 이러한 균열군은 단균열과는 달리 상당히 다른 거동을 나타낸다. 그러나 대부분의 수치기법으로는 이러한 균열군 거동의 모사는 계산량의 증가로 결코 쉽지 않다. 따라서 본 논문에서는 수압파쇄시 생성되는 다수의 균열 변위를 경계병치법을 사용하여 효과적으로 계산하기 위한 방법을 제시하였다. 우선 평행하면서 아주 가깝게 위치한 다중 분할 균열의 점근적 해를 구하고 경계병치법의 균열에 사용된 병치점의 수를 변화시켜 점근적 해와 비교하였다. 그 결과 기존의 기준에 비해 병치점의 수를 10배정도 줄이더라도 얻어지는 결과에는 별 차이가 없음을 밝혀냈다. 따라서 이보다 더욱 복잡한 균열이 존재하는 실제의 경우 병치점의 수를 줄여 적용하여도 경계병치법에 의한 계산은 유효하다는 결론을 얻었다.
The spectral collocation method for a second order elliptic boundary value problem on a domain ${\Omega}$ with curved boundaries is studied using the Gordon and Hall transformation which enables us to have a transformed elliptic problem and a square domain S = [0, h] ${\times}$ [0, h], h > 0. The preconditioned system of the spectral collocation approximation based on Legendre-Gauss-Lobatto points by the matrix based on piecewise bilinear finite element discretizations is shown to have the high order accuracy of convergence and the efficiency of the finite element preconditioner.
We introduce and discuss a new numerical method for solving system of second order boundary value problems, where the solution is required to satisfy some extra continuity conditions on the subintervals in addition to the usual boundary conditions. We show that the present method gives approximations which are better than that produced by other collocation, finite difference and spline methods. Numerical example is presented to illustrate the applicability of the new method. AMS Mathematics Subject Classification : 65L12, 49J40.
Kim, Hong-Kyu;Chong, Jin-Kyo;Park, Kyong-Yop;Kim, Do-Wan
KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
/
제4B권4호
/
pp.180-183
/
2004
This paper presents a description of the point collocation method and its application to the electromagnetic field computation. The interpolation scheme is based on the fast moving least square reproducing kernel approximation. In the method, the integration cell is not required and the essential boundary conditions can be enforced directly. Numerical simulations on 1-D and 2-D problems are carried out to validate the method. It is found that computational efficiency is higher than the general mesh-free methods.
Katili, Irwan;Aristio, Ricky;Setyanto, Samuel Budhi
Structural Engineering and Mechanics
/
제76권4호
/
pp.435-449
/
2020
This work presents the formulation of the isogeometric collocation method to solve the strong form equation of a unified and integrated approach of Reissner Mindlin plate theory (UI-RM). In this plate theory model, the total displacement is expressed in terms of bending and shear displacements. Rotations, curvatures, and shear strains are represented as the first, the second, and the third derivatives of the bending displacement, respectively. The proposed formulation is free from shear locking in the Kirchhoff limit and is equally applicable to thin and thick plates. The displacement field is approximated using the B-splines functions, and the strong form equation of the fourth-order is solved using the collocation approach. The convergence properties and accuracy are demonstrated with square plate problems of thin and thick plates with different boundary conditions. Two approaches are used for convergence tests, e.g., increasing the polynomial degree (NELT = 1×1 with p = 4, 5, 6, 7) and increasing the number of element (NELT = 1×1, 2×2, 3×3, 4×4 with p = 4) with the number of control variable (NCV) is used as a comparable equivalent variable. Compared with DKMQ element of a 64×64 mesh as the reference for all L/h, the problem analysis with isogeometric collocation on UI-RM plate theory exhibits satisfying results.
We consider a numerical scheme for solving a nonlinear boundary integral equation (BIE) obtained by reformulation the nonlinear boundary value problem (BVP). We give a simple alternative to the standard collocation method for the nonlinear BIE. This method consists of one conventional linear system and another coupled linear system resulting from an auxiliary BIE which is obtained by differentiating both side of the nonlinear interior integral equations. We obtain an analogue BIE through the perturbation of the fundamental solution of Laplace's equation. We procure the super-convergence of approximate solutions.
구조물(構造物)에 발생(發生)한 균열(龜裂)이 원공(圓孔)에 접근(接近)할 때 원공(圓孔)과 균열선단(龜裂先端)에서는 큰 응력집중현상(應力集中現象)이 생긴다. 이러한 구조물(構造物)의 응력집중(應力集中)에 대한 수치해석방법(數値解析方法)으로 지금까지 주로 유한요소법(有限要素法)이 사용(使用)되어 왔으나 본 연구(硏究)에서는 유한요소법(有限要素法)에 비(比)해 입력자료(入力資料)와 계산시간(計算時間)을 현저히 줄일 수 있는 경계요소법(境界要素法)(boundary element method)을 시도(試圖)하였다. 두개의 원공(圓孔)사이에 균열(龜裂)이 있는 평판(平板)을 모델로 채택하여 경계요소법(境界要素法)으로 구한 해(解)를 Newman에 의한 경계선점법(境界選點法)(boundary collocation method)의 해와(解) 비교(比較)하였고 원공(圓孔)과 균열선단(龜裂先端)에서 역학적(力學的) 거동(擧動을 구명(究明)하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.