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Electromagnetic Field Analysis Using the Point Collocation Method
Based on the FMLSRK Approximation

Hong-Kyu Kim ', Jin-Kyo Chong*, Kyong-Yop Park* and Do-Wan Kim**

Abstract - This paper presents a description of the point collocation method and its application to the
electromagnetic field computation. The interpolation scheme is based on the fast moving least square
reproducing kernel approximation. In the method, the integration cell is not required and the essential
boundary conditions can be enforced directly. Numerical simulations on 1-D and 2-D problems are
carried out to validate the method. It is found that computational efficiency is higher than the general

mesh-free methods.

Keywords: mesh-free method, moving least square, point collocation method

1. Introduction

Various types of mesh-free methods have been
successfully applied to the analysis of electromagnetic field
problems [1, 2]. The shape functions for most mesh-free
methods are derived from the moving least square
approximation [2, 3]. Because the shape functions for
conventional mesh-free methods do not contain the
Kronecker delta function property, special treatment for

imposing the essential boundary conditions are required [4].

In this paper, the point collocation method based on the fast
moving least square reproducing kermel (FMLSRK)
approximation is presented. The method does not
necessitate integration cells for numerical integration and
the computation of derivatives of the shape function is
much faster than the conventional moving least square
approximations. Through the numerical simulations, the
rate of convergence and the accuracy of the method are
shown.

2. Fast Moving Least Square Reproducing Kernel
Approximation

Let Q be a bounded domain in R" and u(x) be a
continuous function defined in Q@ < R". We also let
A ={xe Qi=1,..,NP } be a set of distributed nodes
both in € and on its boundary. Throughout the paper,
multi-index notations are employed. When
o =(ay,...,0,)is an n-tuple of non-negative integers and

x=(x;,%,,....x, )€ R", we define
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x* = M x%x,®, ¢

and write the o-th derivative of a smooth function as
DY=09% 0%..0% . (2)

Now let us introduce the vector of complete basis
polynomials in R" of order less than or equal to 7 such that

+m)!
P.x)= (xP,xP,..xP) L=(n m)

3)

nim!

where B, ’s are all multi-indices of n-tuples in

lexicographical order and | B; 1< m. For example, if n = 2

and m=2, then the multi-indices are arranged in order of
(0,0), (1,0), (0,1), (2,0), (1,1) and (0,2) and thus P,(x) is
(1,x,y, 2,2y,

What we want to do first is to find the best local
approximation of u(x) at X € Q of the following form

x—-X X—X

U, (x,%) =P, (—)-a®) =Ph(
p P

nax , @

in the manner of minimizing the locally weighted square
functional

J@a®)= 3ux;)-U,, ;%) <1>("'—p‘3> )

x,€A

where ®(y) is a non-negative and compactly supported

continuous function in R" referred to as the window
function.

The minimizing procedure yields the best local
approximation of u(x) at X
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X—%

U, (x,%=p,=2).
p
ZAM‘1 (i)Pm(x’,;’S@("’;")u(x,) 6)

where M (X)is the moment matrix defined by

e Xy ()
p p

M@= 3P, pl
X,;€A P

In this study, we use the window function of
o(y)=-[yp* for y|<1.

Based on the best local approximation U,,(x,X), the
locally approximated derivatives of u(x) are defined by

D%Um<x,i>=[D"P,T,,<X;")J.
1= X, —X X; —X
SMTEP, OO ux,),  ©®)
x;eA P
where ladl <m.
We arrive at the position where the global

approximations of all derivatives of u(x) are resultant from
the local ones of (8) simply by taking the limit as X goes
to x. Thus we define notations of the global
approximations of #(x) and obtain the identities

lim
Dyfu(x)=x—x DYU,xX)= T¥PI®ux,) (9

X,EA

where lod <m and the function of PI*)(x) are defined as

the solution of the following matrix equation

18
P s
ﬁl!‘PI (x)

B
M(x) 72!—‘{'[1132](1‘) =P (

m

X; —X X; —X

) @ ). (10)

Bl
P i
ﬂL!‘I’I (x)

We call lP[I"‘](X) the o-th shape function associated

with the window function ® . Note that Yi”(x)’s are
standard shape functions of mesh-free methods.

Using a compactly supported continuous non-negative
window function ®(y), the resulting shape functions of

FMLSRK are defined as follows [5]:

P90 = L eIM T (P, AL Ne X=X (1)
p P P

(n+m)!
where lod<m, el is the o-th unit vectorin R =n' .

3. Point Collocation Scheme Based on FMLSRK
Approximation

We will propose a general point collocation scheme. In
order to obtain the mesh-free numerical solution of a
partial differential equation (PDE), we first interpolate the
solution u(x) of the PDE such that

ux) = U= Tu, P
X;€A (12)

where the nodal values u; should be determined later
from the governing equations. The derivatives of u(x) in
the PDE and on the boundary conditions are replaced with
the following approximated derivatives

D u(x)~ DR UR) = T @) (x)
x,EA (13)
forO<Ifl<m.

In order to expose a point collocation scheme, we
consider the following Poisson problem.

—Au=f in Q (14)
ou

u=g on I and a—=hon I'y (15)
n

We propose the point collocation discretization of the
Poisson problem using the approximations (12) and (13) as
follows:

u) = Tu, P00

X ;EA (16)
= Tu; (PP + PP () = f(x)
X €A (17)
u POV ) = g(x*)

X;EA (18)

Su; (PO, PO - ax") = h(x")
X €A (19)
x'eA,x'eA,,x"€A, (20)

where A; , A, and A, are sets of interior nodes, Dirichlet
boundary
respectively. Here n(x") is the outward unit normal

nodes and Neumann boundary nodes,

vectorat x"e A,,.
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In this case, the second order-approximated derivatives
are needed. Thus we choose the order m of basis
polynomial P, greater than or equal to 2.

It is worth noting that the extension of the above method
using the dilation function is considerably natural. The
constant dilation parameter p can be replaced with the
continuous dilation function p,. It is almost impossible to
introduce p, with the generalized m-th order consistency
condition preserved except FMLSRK approximation.

4. Numerical Simulations
To validate the method, a one-dimensional problem with

an analytical solution is solved at first. The model problem
is

2
—%q (O<x<1) 1)
u(0)=0 and u'(1)=0. 22)

Fig. 1 shows the comparison between the numerical and
analytic solutions. The numerical results are obtained using
the second and third order scheme (m=2 and 3
respectively) with five nodes. For the third order case, the
numerical result is nearly the same as the analytic solution
only with five nodes.
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Fig. 1 Comparison between numerical and analytic
solutions.

The next numerical test problem is for the study of the
convergence rate of the method. The governing equations
are

Au=f in Q=[0,1]x[0,1] (23)
=g on 0Q, 24)

where f and g are obtained from the solution of
u(x,y)=(x+2y)° .
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Fig. 2 Relative L™ error for u with respect to nodal distance 4.
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(b) Plot of equi-potential lines
Fig. 3 Analysis of 2-D electrostatic problem

Fig. 2 indicates the plot of the relative error in L™ -norm
when a uniform A-refinement is used. For the case m = 4,
the convergence rate is observed to be better than that of
the case m =2 or m = 3.
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The proposed method is also applied to the electrostatic
problem. Fig. 3(a) shows the analysis domain and
boundary condition and (b) shows the plot of computed
equi-potential lines. A reasonably accurate solution can be
obtained for this problem.

5. Conclusion

The point collocation method proposed in this paper is a
very promising mesh-free method and has many merits
compared with other mesh-free methods. Therefore, the
proposed method is applicable to many applications such
as optimization problems, 3-D problems, moving boundary
problems and so on.
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