• 제목/요약/키워드: Boundary Nonlinear

검색결과 1,216건 처리시간 0.029초

SOLVING SINGULAR NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS IN THE REPRODUCING KERNEL SPACE

  • Geng, Fazhan;Cui, Minggen
    • 대한수학회지
    • /
    • 제45권3호
    • /
    • pp.631-644
    • /
    • 2008
  • In this paper, we present a new method for solving a nonlinear two-point boundary value problem with finitely many singularities. Its exact solution is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximation $u_n(x)$ to the exact solution u(x) is obtained and is proved to converge to the exact solution. Some numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method are compared with the exact solution of each example and are found to be in good agreement with each other.

PROPERTIES OF POSITIVE SOLUTIONS FOR A NONLOCAL REACTION-DIFFUSION EQUATION WITH NONLOCAL NONLINEAR BOUNDARY CONDITION

  • Mu, Chunlai;Liu, Dengming;Zhou, Shouming
    • 대한수학회지
    • /
    • 제47권6호
    • /
    • pp.1317-1328
    • /
    • 2010
  • In this paper, we study the properties of positive solutions for the reaction-diffusion equation $u_t$ = $\Delta_u+{\int}_\Omega u^pdx-ku^q$ in $\Omega\times(0,T)$ with nonlocal nonlinear boundary condition u (x, t) = ${\int}_{\Omega}f(x,y)u^l(y,t)dy$ $\partial\Omega\times(0,T)$ and nonnegative initial data $u_0$ (x), where p, q, k, l > 0. Some conditions for the existence and nonexistence of global positive solutions are given.

Improved HPC method for nonlinear wave tank

  • Zhu, Wenbo;Greco, Marilena;Shao, Yanlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.598-612
    • /
    • 2017
  • The recently developed Harmonic Polynomial Cell (HPC) method has been proved to be a promising choice for solving potential-flow Boundary Value Problem (BVP). In this paper, a flux method is proposed to consistently deal with the Neumann boundary condition of the original HPC method and enhance the accuracy. Moreover, fixed mesh algorithm with free surface immersed is developed to improve the computational efficiency. Finally, a two dimensional (2D) multi-block strategy coupling boundary-fitted mesh and fixed mesh is proposed. It limits the computational costs and preserves the accuracy. A fully nonlinear 2D numerical wave tank is developed using the improved HPC method as a verification.

대진폭 조화 운동을 하는 잠수구에 의한 비선형 조파현상의 시간영역 해석 (Time-Domain Analysis of Nonlinear Wave-Making Phenomena by a Submerged Sphere Oscillating with Large Amplitude)

  • 김용직;하영록
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.382-385
    • /
    • 2006
  • A high-order spectral/boundary-element method is newly adapted as an efficient numerical tool. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved fly using the high-order spectral method and body potential is solved fly using the high-order boundary element method. Through the combination of these two methods, the wave-making problems fly a submerged sphere moving with the large amplitude oscillation are solved in time-domain. With the example calculations, nonlinear effects on free-surface profiles and hydrodynamic forces are shown and discussed.

  • PDF

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeitaba, Sayed Behzad
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.307-318
    • /
    • 2019
  • This is the first attempt to consider the nonlinear bending analysis of porous functionally graded (FG) thick annular and circular nanoplates resting on Kerr foundation. The size effects are captured based on modified couple stress theory (MCST). The material properties of the porous FG nanostructure are assumed to vary smoothly through the thickness according to a power law distribution of the volume fraction of the constituent materials. The elastic medium is modeled by Kerr elastic foundation which consists of two spring layers and one shear layer. The governing equations are extracted based on Hamilton's principle and two variables refined plate theory. Utilizing generalized differential quadrature method (GDQM), the nonlinear static behavior of the nanostructure is obtained under different boundary conditions. The effects of various parameters such as material length scale parameter, boundary conditions, and geometrical parameters of the nanoplate, elastic medium constants, porosity and FG index are shown on the nonlinear deflection of the annular and circular nanoplates. The results indicate that with increasing the material length scale parameter, the nonlinear deflection is decreased. In addition, the dimensionless nonlinear deflection of the porous annular nanoplate is diminished with the increase of porosity parameter. It is hoped that the present work may provide a benchmark in the study of nonlinear static behavior of porous nanoplates.

An Analytical Solution for Regular Progressive Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권3호
    • /
    • pp.157-167
    • /
    • 2015
  • In order to provide simple and accurate wave theory in design of offshore structure, an analytical approximation is introduced in this paper. The solution is limited to flat bottom having a constant water depth. Water is considered as inviscid, incompressible and irrotational. The solution satisfies the continuity equation, bottom boundary condition and non-linear kinematic free surface boundary condition exactly. Error for dynamic condition is quite small. The solution is suitable in description of breaking waves. The solution is presented with closed form and dispersion relation is also presented with closed form. In the last century, there have been two main approaches to the nonlinear problems. One of these is perturbation method. Stokes wave and Cnoidal wave are based on the method. The other is numerical method. Dean's stream function theory is based on the method. In this paper, power series method was considered. The power series method can be applied to certain nonlinear differential equations (initial value problems). The series coefficients are specified by a nonlinear recurrence inherited from the differential equation. Because the non-linear wave problem is a boundary value problem, the power series method cannot be applied to the problem in general. But finite number of coefficients is necessary to describe the wave profile, truncated power series is enough. Therefore the power series method can be applied to the problem. In this case, the series coefficients are specified by a set of equations instead of recurrence. By using the set of equations, the nonlinear wave problem has been solved in this paper.

2차원 수중익주위 비선형 자유표면유동의 시간영역 시뮬레이션 (Time-Domain Simulation of Nonlinear Free-Surface Flows around a Two-Dimensional Hydrofoil)

  • 김용직
    • 대한조선학회논문집
    • /
    • 제31권2호
    • /
    • pp.45-56
    • /
    • 1994
  • 2차원 수중익 주위의 비선형 자유표면 유동을 시간영역에서 시뮬레이션할 수 있는 수치해법이 개발되었다. 본 수치해법은 고차 스펙트럴법과 경계요소법을 조합한 스펙트럴/경계요소법(spectral/boundary-element method)이며, 자유표면은 고차 스펙트럴법에 의해 그리고 수중익과 후류 보오텍스는 경계요소법에 의해 다루어 진다. 본 방법은 자유표면과 수중익의 비선형/비정상 상호작용문제에 폭넓게 적용될 수 있으며, 특히 스펙트럴법을 사용하므로 자유표면 유동을 매우 효율적으로 다룰 수 있다. 적용예로 정지상태에서 출발하여 자유표면 근처에서 균속 전진운동 또는 전진 및 동요운동을 하는 경우가 다루어 졌고, 자유표면파와 동유체력에서의 비선형/비정상 효과들이 보여지고 있다. 비정상해의 특수한 경우로 얻어지는 정상상태의 계산결과들이 다른 이론 또는 실험결과들과 비교되었으며, 좋은 일치를 보이고 있다.

  • PDF

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.