• Title/Summary/Keyword: Bostrychia

Search Result 8, Processing Time 0.017 seconds

Insights into evolution and speciation in the red alga Bostrychia: 15 years of research

  • Zuccarello, Giuseppe C.;West, John A.
    • ALGAE
    • /
    • v.26 no.1
    • /
    • pp.21-32
    • /
    • 2011
  • Studies of the red algal genus Bostrychia over the last 15 years have made it a model system for many evolutionary processes within red algal species. The combination of newly developed, or first employed methods, in red algal species studies has made Bostrychia a pioneer genus in intraspecific studies. Bostrychia was the first genus in which a mitochondrial marker was used for intraspecific red algal phylogeny, and the first for which a 3-genome phylogeny was undertaken. The genus was the first red alga used to genetically show maternal plastid and mitochondria inheritance, and also to show correlation between cryptic species (genetically divergent intraspecific lineages) and reproductive incompatibility. The chemotaxonomic use, and physiological function of osmolytes, has also been extensively studied in Bostrychia. Our continuous studies of Bostrychia also highlight important aspects in algal species studies. Our worldwide sampling, and resampling in certain areas, show that intensive sampling is needed to accurately assess the genetic diversity and therefore phylogeographic history of algal species, with increased sampling altering evolutionary hypotheses. Our studies have also shown that long-term morphological character stability (stasis) and character convergence can only be correctly assessed with wide geographic sampling of morphological species. While reproductive incompatibility of divergent lineages supports the biological species nature of these lineages, reproductive incompatibility is also seen between isolates with little genetic divergence. It seems that reproductive incompatibility may evolve quickly in red algae and the unique early stages of fertilization (e.g., gametes covered by walls, active movement of spermatium nuclei to the distant egg nucleus), also well investigated in Bostrychia,. may be key to our understanding of this process.

Gall structure and specificity in Bostrychia culture isolates (Rhodomelaceae, Rhodophyta)

  • West, John A.;Pueschel, Curt M.;Klochkova, Tatyana A.;Kim, Gwang Hoon;De Goer, Susan;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • v.28 no.1
    • /
    • pp.83-92
    • /
    • 2013
  • The descriptions of galls, or tumors, in red algae have been sparse. K$\ddot{u}$tzing (1865) observed possible galls of Bostrychia but only presented a drawing. Intensive culture observations of hundreds of specimens of the genus Bostrychia over many years have revealed that galls appeared in only a small subset of our unialgal cultures of B. kelanensis, Bostrychia moritziana/radicans, B. radicosa, B. simpliciuscula, and B. tenella and continued to be produced intermittently or continuously over many years in some cultures but were never seen in field specimens. Galls appeared as unorganized tissue found primarily on males and bisexuals, but occasionally on females and tetrasporophytes. The gall cells usually were less pigmented than neighboring tissue, but contained cells with fluorescent plastids and nuclei. The galls were not transferable to other potential hosts. Galls could be produced from gall-free tissue of cultures that originally had galls even after transfer to new culture dishes. Electon microscopy of galls on one isolate (3895) showed that virus-like particles are observed in some gall cells. It is possible that a virus is the causative agent of these galls.

Monosiphonous growth and cell-death in an unusual Bostrychia (Rhodomelaceae, Rhodophyta): B. anomala sp. nov.

  • West, John A.;Loiseaux de Goer, Susan;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • v.28 no.2
    • /
    • pp.161-171
    • /
    • 2013
  • A morphologically distinct lineage within the Bostrychia moritziana-B. radicans species complex is described as a new species. Bostrychia anomala has thalli with branched monosiphonous filaments with apical cell divisions. The species has terminal tetrasporangial stichidia, each subtending cell bearing tetrasporangia with 2 cover cells. Discharged spores divide transversely, the lower cell first forming a narrow rhizoid and the upper cell forming a monosiphonous shoot. Females have subterminal procarps and males have terminal spermatangial stichidia. Carposporophytes are spherical. Isolates in culture show a pattern of cell death not associated with injury, reminiscent of programmed cell death. Bostrychia anomola shows cell death at intervals along the filaments resulting in division of adjacent cells on either side of the dead cell re-joining the filament; cell division of only one adjacent cell resulting in branching at that site; or filaments fragmenting at the cell death point with adjacent cells forming new apical cells, a means of thallus propagation. The cell death pattern could be a method of filament propagation in the mangrove environment where sexual reproduction is rare.

Keeping house: evaluation of housekeeping genes for real-time PCR in the red alga, Bostrychia moritziana (Florideophyceae)

  • Shim, Junbo;Shim, Eunyoung;Kim, Gwang Hoon;Han, Jong Won;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • v.31 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Biological response of cells to variable conditions should affect the expression level of certain genes. Quantification of these changes in target genes needs stable internal controls. Real-time quantitative polymerase chain reaction (PCR) has traditionally used reference or ‘housekeeping’ genes, that are considered to maintain equal expression in different conditions, to evaluate changes in target genes between samples and experimental conditions. Recent studies showed that some housekeeping genes may vary considerably in certain biological samples. This has not been evaluated in red algae. In order to identify the optimal internal controls for real-time PCR, we studied the expression of eleven commonly used housekeeping genes; elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase, β-actin, polyubiquitin, 30S ribosomal gene, 60S ribosomal gene, beta-tubulin, alpha-tubulin, translation initiation factor, ubiquitin-conjugating enzyme, and isocitrate dehydrogenase in different life-history stages of Bostrychia moritziana. Our results suggest that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 30S ribosomal gene, have the most stable gene expression levels between the different life history stages (male, female, carposporophyte, and tetrasporophyte), while the other genes are not satisfactory as internal controls. These results suggest that the combinations of GAPDH and 30S would be useful as internal controls to assess expression level changes in genes that may control different physiological processes in this organism or that may change in different life history stages. These results may also be useful in other red algal systems.

Dynamics of spermatial nuclei in trichogyne of the red alga Bostrychia moritziana (Florideophyceae)

  • Shim, Eunyoung;Park, Hana;Im, Soo Hyun;Zuccarello, Giuseppe C.;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.35 no.4
    • /
    • pp.389-404
    • /
    • 2020
  • Red algal fertilization is unusual and offers a different model to the mechanism of intracellular transport of nuclei and polyspermy blocking. A female carpogonium (egg) undergoes plasmogamy with many spermatia (sperm) simultaneously at the receptive structure, trichogyne, which often contains numerous male nuclei. The pattern of selective transport of a male nucleus to the female nucleus, located in the cell body of the carpogonium, remain largely unknown. We tracked the movement of spermatial nuclei and cell organelles in the trichogyne after plasmogamy using time-lapse videography and fluorescent probes. The fertilization process of Bostrychia moritziana is composed of five distinctive stages: 1) gamete-gamete binding; 2) mitosis in the attached spermatia; 3) formation of a fertilization channel; 4) migration of spermatial nuclei into the trichogyne; and 5) cutting off of the trichogyne cytoplasm from the rest of the cell after karyogamy. Our results showed that actin microfilaments were involved in the above steps of fertilization, microtubules are involved only in spermatial mitosis. Time-lapse videography showed that the first ("primary") nucleus which entered to trichogyne moved quickly to the base of carpogonium and fused with the female nucleus. The transport of the primary male nucleus to the egg nucleus was complete before its second nucleus migrated into the trichogyne. Male nuclei from other spermatia stopped directional movement soon after the first one entered the carpogonial base and oscillated near where they entered trichogyne. The cytoplasm of the trichogyne was cut off at a narrow neck connecting the trichogyne and carpogonial base after gamete nuclear fusion but gamete binding and plasmogamy continued on the trichogyne. Spermatial organelles, including mitochondria, entered the trichogyne together with the nuclei but did not show any directional movement and remained close to where they entered. These results suggest that polyspermy blocking in B. moritziana is achieved by the selective and rapid transport of the first nucleus entered trichogyne and the rupture of the trichogyne after gamete karyogamy.

Phylogeographic patterns in cryptic Bostrychia tenella species (Rhodomelaceae, Rhodophyta) across the Thai-Malay Peninsula

  • Bulan, Jakaphan;Maneekat, Sinchai;Zuccarello, Giuseppe C.;Muangmai, Narongrit
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2022
  • Genetic diversity and distribution patterns of marine macroalgae are increasingly being documented in Southeast Asia. These studies show that there can be significant levels of genetic diversity and isolation between populations on either side of the Thai-Malay Peninsula. Bostrychia tenellla is a common filamentous red seaweed in the region and the entity is represented by at least two cryptic species. Despite being highly diverse and widespread, genetic variation and population structure of this species complex remains understudied, especially around the Thai-Malay Peninsula. We analyzed genetic diversity and inferred the phylogeographic pattern of specimens identified as B. tenella using the plastid RuBisCo spacer from samples from the Andaman Sea and the Gulf of Thailand. Our genetic analysis confirmed the occurrence of the two cryptic B. tenella species (B and C) along both coasts. Cryptic species B was more common in the area and displayed higher genetic diversity than species C. Historical demographic analyses indicated a stable population for species B, but more recent population expansion for species C. Our analyses also revealed that both cryptic species from the Andaman Sea possessed higher genetic diversity than those of the Gulf of Thailand. We also detected moderate to high levels of gene flow and weak phylogeographic structure of cryptic species B between the two coasts. In contrast, phylogeographic analysis showed genetic differences between populations of both cryptic species within the Andaman Sea. Overall, these results suggest that cryptic B. tenella species around Thai-Malay Peninsula may have undergone different demography histories, and their patterns of genetic diversity and phylogeography were likely caused by geological history and regional sea surface current circulation in the area.

Observations on some mangrove-associated algae from the western Pacific (Guam, Chuuk, Kosrae, and Pohnpei)

  • West, John A.;Kamiya, Mitsunobu;Loiseaux de Goer, Susan;Karsten, Ulf;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • v.28 no.3
    • /
    • pp.241-266
    • /
    • 2013
  • The mangrove algal flora of Guam and the Federated States of Micronesia has been poorly explored. We add to our knowledge of this region by observations of collections from these regions. This paper presents new and additional records of: Rhodophyta-Acrochaetium globosum, Colaconema sp., Caulacanthus indicus, Bostrychia moritziana / B. radicans, B. radicosa, B. simpliciuscula, B. kelanensis and B. tenella, Murrayella periclados, and Caloglossa ogasawaraensis; Chlorophyta-Boodleopsis carolinensis; and Phaeophyceae-Dictyota adnata, Dictyotopsis propagulifera, and Canistrocarpus cervicornis. Most specimens were cultured to investigate their reproductive biology and many specimens were further identified using molecular data. Low molecular weight carbohydrates (dulcitol, sorbitol, and digeneaside) were identified in samples of B. radicosa and B. simpliciuscula. We also present data on manganese-rich deposits found on B. simpliciuscula and B. tenella in culture, possibly formed by epiphytic bacteria.

Physiological responses to salt stress by native and introduced red algae in New Zealand

  • Gambichler, Vanessa;Zuccarello, Giuseppe C.;Karsten, Ulf
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.137-146
    • /
    • 2021
  • Intertidal macroalgae are regularly exposed to hypo- or hypersaline conditions which are stressful. However, red algae in New Zealand are generally poorly studied in terms of salinity tolerance. Consequently, two native (Bostrychia arbuscula W. H. Harvey [Ceramiales], Champia novae-zelandiae [J. D. Hooker & Harvey] Harvey [Rhodymeniales]) and one introduced red algal taxon (Schizymenia spp. J. Agardh [Nemastomatales]) were exposed for 5 days in a controlled salt stress experiment to investigate photosynthetic activity and osmotic acclimation. The photosynthetic activity of B. arbuscula was not affected by salinity, as reflected in an almost unchanged maximum quantum yield (Fv/Fm). In contrast, the Fv/Fm of C. novae-zelandiae and Schizymenia spp. strongly decreased under hypo- and hypersaline conditions. Treatment with different salinities led to an increase of the total organic osmolyte concentrations with rising salt stress in B. arbuscula and Schizymenia spp. In C. novae-zelandiae the highest organic osmolyte concentrations were recorded at SA 38, followed by declining amounts with further hypersaline exposure. In B. arbuscula, sorbitol was the main organic osmolyte, while the other taxa contained floridoside. The data presented indicate that all three red algal species conspicuously differ in their salt tolerance. The upper intertidal B. arbuscula exhibited a wide salinity tolerance as reflected by unaffected photosynthetic parameters and strong sorbitol accumulation under increasing salinities, and hence can be characterized as euryhaline. In contrast, the introduced Schizymenia spp. and native C. novae-zelandiae, which preferentially occur in the mid-intertidal, showed a narrower salinity tolerance. The species-specific responses reflect their respective vertical positions in the intertidal zone.