Browse > Article
http://dx.doi.org/10.4490/algae.2013.28.1.083

Gall structure and specificity in Bostrychia culture isolates (Rhodomelaceae, Rhodophyta)  

West, John A. (School of Botany, University of Melbourne)
Pueschel, Curt M. (Department of Biological Sciences, State University of New York at Binghamton)
Klochkova, Tatyana A. (Department of Biology, Kongju National University)
Kim, Gwang Hoon (Department of Biology, Kongju National University)
De Goer, Susan (11 Rue des Moguerou)
Zuccarello, Giuseppe C. (School of Biological Sciences, Victoria University of Wellington)
Publication Information
ALGAE / v.28, no.1, 2013 , pp. 83-92 More about this Journal
Abstract
The descriptions of galls, or tumors, in red algae have been sparse. K$\ddot{u}$tzing (1865) observed possible galls of Bostrychia but only presented a drawing. Intensive culture observations of hundreds of specimens of the genus Bostrychia over many years have revealed that galls appeared in only a small subset of our unialgal cultures of B. kelanensis, Bostrychia moritziana/radicans, B. radicosa, B. simpliciuscula, and B. tenella and continued to be produced intermittently or continuously over many years in some cultures but were never seen in field specimens. Galls appeared as unorganized tissue found primarily on males and bisexuals, but occasionally on females and tetrasporophytes. The gall cells usually were less pigmented than neighboring tissue, but contained cells with fluorescent plastids and nuclei. The galls were not transferable to other potential hosts. Galls could be produced from gall-free tissue of cultures that originally had galls even after transfer to new culture dishes. Electon microscopy of galls on one isolate (3895) showed that virus-like particles are observed in some gall cells. It is possible that a virus is the causative agent of these galls.
Keywords
Bostrychia; galls; Rhodomelaceae; Rhodophyta; unialgal culture; virus-like particles;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zuccarello, G. C. 2008. A fungal gall of Catenella nipae (Caulacanthaceae, Rhodophyta) and a review of Catenellocolax leeuwenii. Bot. Mar. 51:436-440.
2 Zuccarello, G. C. & West, J. A. 2003. Multiple cryptic species: molecular diversity and reproductive isolation in the Bostrychia radicans/B. moritziana complex (Rhodomelaceae, Rhodophyta) with focus on North American isolates. J. Phycol. 39:948-959.   DOI   ScienceOn
3 Zuccarello, G. C. & West, J. A. 2006. Molecular phylogeny of the subfamily Bostrychioideae (Ceramiales, Rhodophyta): subsuming Stictosiphonia and highlighting polyphyly in species of Bostrychia. Phycologia 45:24-36.   DOI
4 Zuccarello, G. C. & West, J. A. 2011. Insights into evolution and speciation in the red alga Bostrychia: 15 years of research. Algae 26:21-32.   과학기술학회마을   DOI   ScienceOn
5 Zuccarello, G. C., West, J. A., Karsten, U. & King, R. J. 1999. Molecular relationships within Bostrychia tenuissima (Rhodomelaceae, Rhodophyta). Phycol. Res. 47:81-85.   DOI   ScienceOn
6 West, J. A. 2005. Long term macroalgal culture maintenance. In Andersen, R. A. (Ed.) Algal Culturing Techniques. Academic Press, New York, pp. 157-163.
7 West, J. A. & Zuccarello, G. C. 1999. Biogeography of sexual and asexual populations in Bostrychia moritziana (Rhodomelaceae, Rhodophyta). Phycol. Res. 47:115-123.   DOI   ScienceOn
8 Apt, K. & Gibor, A. 1989. Development and induction of bacteria-associated galls on Prionitis lanceolata (Rhodophyta). Dis. Aquat. Org. 6:151-156.   DOI
9 Apt, K. E. 1988. Galls and tumor-like growths on marine macroalgae. Dis. Aquat. Org. 4:211-217.   DOI
10 Apt, K. E. & Gibor, A. 1991. The ultrastructure of galls on the red alga Gracilaria epihippisora. J. Phycol. 27:409-413.   DOI
11 Ashen, J. B., Cohen, J. D. & Goff, L. J. 1999. GC-SIM-MS detection and quantification of free indole-3-acetic acid in bacterial galls on the marine alga Prionitis lanceolata (Rhodophyta). J. Phycol. 35:493-500.   DOI
12 Ashen, J. B. & Goff, L. J. 1996. Molecular identification of a bacterium associated with gall formation in the marine red alga Prionitis lanceolata. J. Phycol. 32:286-297.   DOI
13 Ashen, J. B. & Goff, L. J. 1998. Galls on the marine red alga Prionitis lanceolata (Halymeniaceae): specific induction and subsequent development of an algal-bacterial symbiosis. Am. J. Bot. 85:1710-1721.   DOI
14 Ashen, J. B. & Goff, L. J. 2000. Molecular and ecological evidence for species specificity and coevolution in a group of marine algal-bacterial symbioses. Appl. Environ. Microbiol. 66:3024-3030.   DOI
15 Correa, J. A., Flores, V. & Sanchez, P. 1993. Deformative disease in Iridaea laminarioides (Rhodophyta): gall develoment associated with an endophytic cyanobacterium. J. Phycol. 29:853-860.   DOI   ScienceOn
16 Francki, R. I. B., Milne, R. G. & Hatta, T. 1985. Atlas of plant viruses. CRC Press, Boca Raton, FL, Vol. 1. 222 pp, Vol. 2. 284 pp.
17 King, R. J. & Puttock, C. F. 1989. Morphology and taxonomy of Bostrychia and Stictosiphonia (Rhodomelaceae/Rhodophyta). Aust. Syst. Bot. 2:1-73.   DOI
18 Kutzing, F. T. 1865. Tabulae phycologicae. Abbildungen der Tange. Vol. 15. W. Koehne, Nordhausen, 36 pp.
19 McBride, D. L., Kugrens, P. & West, J. A. 1974. Light and electron microscopic observations on red algal galls. Protoplasma 79:249-264.   DOI
20 Pueschel, C. M. 1995. Rod-shaped virus-like particles in the endoplasmic reticulum of Audouinella saviana (Acrochaetiales, Rhodophyta). Can. J. Bot. 73:1974-1980.   DOI
21 Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208-212.   DOI   ScienceOn
22 Scheffer, R. P. 1997. The nature of disease in plants. Cambridge University Press, Cambridge, 325 pp.
23 Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31-43.   DOI   ScienceOn
24 Tsekos, I. 1982. Tumour-like growths induced by bacteria in the thallus of a red alga, Gigartina teedii (Roth) Lamour. Ann. Bot. 49:123-126.