Browse > Article
http://dx.doi.org/10.4490/algae.2021.36.6.10

Physiological responses to salt stress by native and introduced red algae in New Zealand  

Gambichler, Vanessa (Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock)
Zuccarello, Giuseppe C. (School of Biological Sciences, Victoria University of Wellington)
Karsten, Ulf (Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock)
Publication Information
ALGAE / v.36, no.2, 2021 , pp. 137-146 More about this Journal
Abstract
Intertidal macroalgae are regularly exposed to hypo- or hypersaline conditions which are stressful. However, red algae in New Zealand are generally poorly studied in terms of salinity tolerance. Consequently, two native (Bostrychia arbuscula W. H. Harvey [Ceramiales], Champia novae-zelandiae [J. D. Hooker & Harvey] Harvey [Rhodymeniales]) and one introduced red algal taxon (Schizymenia spp. J. Agardh [Nemastomatales]) were exposed for 5 days in a controlled salt stress experiment to investigate photosynthetic activity and osmotic acclimation. The photosynthetic activity of B. arbuscula was not affected by salinity, as reflected in an almost unchanged maximum quantum yield (Fv/Fm). In contrast, the Fv/Fm of C. novae-zelandiae and Schizymenia spp. strongly decreased under hypo- and hypersaline conditions. Treatment with different salinities led to an increase of the total organic osmolyte concentrations with rising salt stress in B. arbuscula and Schizymenia spp. In C. novae-zelandiae the highest organic osmolyte concentrations were recorded at SA 38, followed by declining amounts with further hypersaline exposure. In B. arbuscula, sorbitol was the main organic osmolyte, while the other taxa contained floridoside. The data presented indicate that all three red algal species conspicuously differ in their salt tolerance. The upper intertidal B. arbuscula exhibited a wide salinity tolerance as reflected by unaffected photosynthetic parameters and strong sorbitol accumulation under increasing salinities, and hence can be characterized as euryhaline. In contrast, the introduced Schizymenia spp. and native C. novae-zelandiae, which preferentially occur in the mid-intertidal, showed a narrower salinity tolerance. The species-specific responses reflect their respective vertical positions in the intertidal zone.
Keywords
floridoside; hypersaline; maximum quantum yield; organic osmolytes; sorbitol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wiencke, C. & Lauchili, A. 1981. Inorganic ions and floridoside as osmotic solutes in Porphyra umbilicalis. Z. Pflanzenphysiol. 103:247-258.   DOI
2 Karsten, U., Michalik, D., Michalik, M. & West, J. A. 2005. A new unusual low molecular weight carbohydrate in the red algal genus Hypoglossum (Delesseriaceae, Ceramiales) and its possible function as an osmolyte. Planta 222:319-326.   DOI
3 Kirst, G. O. 1990. Salinity tolerance of eukaryotic marine algae. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:21-53.   DOI
4 West, J. A. & McBride, D. L. 1999. Long-term and diurnal carpospore discharge patterns in the Ceramiaceae, Rhodomelaceae and Delesseriaceae (Rhodophyta). Hydrobiologia 398/399:101-113.   DOI
5 Nelson, W. A. 2013. New Zealand seaweeds: an illustrated guide. Te Papa Press, Wellington, 328 pp.
6 Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22:415-427.   DOI
7 Karsten, U. 2012. Seaweed acclimation to salinity and desiccation stress. In Wiencke, C. & Bischof, K. (Eds.) Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization. Vol. 219. Springer, Berlin, pp. 87-107.
8 Luning, K. 1990. Seaweeds: Their environment, biogeography, and ecophysiology. John Wiley & Sons, New York, 527 pp.
9 Maxwell, K. & Johnson, G. N. 2000. Chlorophyll fluorescence: a practical guide. J. Exp. Bot. 51:659-668.   DOI
10 Nelson, W. A. 1994. Distribution of macroalgae in New Zealand: an archipelago in space and time. Bot. Mar. 37:221-233.   DOI
11 Karsten, U. & Kirst, G. O. 1989. Incomplete turgor pressure regulation in the "terrestial" red alga, Bostrychia scorpioides (Huds.) Mont. Plant Sci. 61:29-36.   DOI
12 Karsten, U., Barrow, K. D., Nixdorf, O. & King, R. J. 1996a. The compability with enzyme activity of unusual organic osmolytes from mangrove red algae. Aust. J. Plant Physiol. 23:577-582.   DOI
13 Karsten, U., Barrow, K. D., Nixdorf, O., West, J. A. & King, R. J. 1997. Characterization of mannitol metabolism in the mangrove red alga Caloglossa leprieurii (Montagne) J.Agardh. Planta 201:173-178.
14 Karsten, U., Gors, S., Eggert, A. & West, J. A. 2007. Trehalose, digeneaside, and floridoside in the Florideophyceae (Rhodophyta): a reevaluation of its chemotaxonomic value. Phycologia 46:143-150.   DOI
15 Scherner, F., Ventura, R., Barufi, J. B. & Horta, P. A. 2013. Salinity critical threshold values for photosynthesis of two cosmopolitan seaweed species: providing baselines for potential shifts on seaweed assemblages. Mar. Environ. Res. 91:14-25.   DOI
16 Ramirez, M. E., Nunez, J. D., Ocampo, E. H., Matula, C. V., Suzuki, M., Hashimoto, T. & Cledon, M. 2012. Schizymenia dubyi (Rhodophyta, Schizymeniaceae), a new introduced species in Argentina. N. Z. J. Bot 50:51-58.   DOI
17 Ritchie, R. J. 1988. The ionic relations of Ulva lactuca. J. Plant Physiol. 133:183-192.   DOI
18 Saunders, G. W., Birch, T. C. & Dixon, K. R. 2015. A DNA barcode survey of Schizymenia (Nemastomatales, Rhodophyta) in Australia and British Columbia reveals overlooked diversity including S. tenuis sp. nov. and Predaea borealis sp. nov. Botany 93:859-871.   DOI
19 Kirst, G. O. & Bisson, M. A. 1979. Regulation of turgor pressure in marine algae: ions and low-molecular-weight organic compounds. Aust. J. Plant Physiol. 6:539-556.
20 Karsten, U., Bock, C. & West, J. A. 1995. Low molecular weight carbohydrate patterns in geographically different isolates of the eulittoral red alga Bostrychia tenuissima from Australia. Bot. Acta 108:321-326.   DOI
21 Brown, M. T. 1987. Effects of desiccation on photosynthesis of intertidal algae from a southern New Zealand shore. Bot. Mar. 30:121-127.   DOI
22 Adams, N. M. 1994. Seaweeds of New Zealand: an illustrated guide. Canterbury University Press, Christchurch, NZ, 360 pp.
23 Angell, A. R., Mata, L., de Nys, R. & Paul, N. A. 2015. Indirect and direct effects of salinity on the quantity and quality of total amino acids in Ulva ohnoi (Chlorophyta). J. Phycol. 51:536-545.   DOI
24 Bischof, K., Gomez, I., Molis, M., Hanelt, D., Karsten, U., Luder, U., Roleda, M. Y., Zacher, K. & Wiencke, C. 2006. Ultraviolet radiation shapes seaweed communities. Rev. Environ. Sci. Biotechnol. 5:141-166.   DOI
25 D'Archino, R., Nelson, W. A. & Zuccarello, G. C. 2007. Invasive marine red alga introduced to New Zealand waters: first record of Grateloupia turuturu (Halymeniaceae, Rhodophyta). N. Z. J. Mar. Freshw. Res. 41:35-42.   DOI
26 D'Archino, R. & Zuccarello, G. C. 2014. First record of Schizymenia apoda (Schizymeniaceae, Rhodophyta) in New Zealand. N. Z. J. Mar. Freshw. Res. 48:155-162.   DOI
27 D'Archino, R. & Zuccarello, G. C. 2020. Schizymenia dubyi (Chauvin ex Duby) J. Agardh collected in Whairepo Lagoon, Wellington Harbour. N. Z. Mar. Exot. Species Note 113:5.
28 Davison, I. R. & Pearson, G. A. 1996. Stress tolerance in intertidal seaweeds. J. Phycol. 32:197-211.   DOI
29 Yancey, P. H. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208:2819-2830.   DOI
30 D'Archino, R. & Zuccarello, G. C. 2021. Two red macroalgae newly introduced into New Zealand: Pachymeniopsis lanceolata (K. Okamura) Y. Yamada ex S. Kawabata and Fushitsunagia catenata Filloramo et G. W. Saunders. Bot. Mar. Advanced online publication. https://doi.org/10.1515/bot-2021-0013.
31 Diehl, N., Michalik, D., Zuccarello, G. C. & Karsten, U. 2019. Stress metabolite pattern in the eulittoral red alga Pyropia plicata (Bangiales) in New Zealand: mycosporinelike amino acids and heterosides. J. Exp. Mar. Biol. Ecol. 510:23-30.   DOI
32 D'Archino, R., Nelson, W., Yang, M. Y. & Kim, M. S. 2015. New record of Hypnea flexicaulis in New Zealand and description of Calliblepharis psammophilus sp. nov. Bot. Mar. 58:485-497.   DOI
33 Underwood, A. J. 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, pp. 140-197.
34 Fredersdorf, J., Muller, R., Becker, S., Wiencke, C. & Bischof, K. 2009. Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483-492.   DOI
35 Hurd, C. L., Nelson, W. A., Falshaw, R. & Neill, K. F. 2004. History, current status and future of marine macroalgal research in New Zealand: taxonomy, ecology, physiology and human uses. Phycol. Res. 52:80-106.   DOI
36 Karsten, U., Koch, S., West, J. A. & Kirst, G. O. 1996b. Physiological responses of the eulittoral macroalga Stictosiphonia hookeri (Rhodomelaceae, Rhodophyta) from Argentina and Chile: salinity, light and temperature acclimation. Eur. J. Phycol. 31:361-368.   DOI
37 Simon-Colin, C., Bessieres, M. -A. & Deslandes, E. 2002. An alternative HPLC method for the quantification of floridoside in salt-stressed cultures of the red alga Grateloupia doryphora. J. Appl. Phycol. 14:123-127.   DOI
38 Schweikert, K., Sutherland, J. E. S., Hurd, C. L. & Burritt, D. J. 2011. UV-B radiation induces changes in polyamine metabolism in the red seaweed Porphyra cinnamomea. Plant Growth Regul. 65:389-399.   DOI
39 Shetty, P., Gitau, M. M. & Maroti, G. 2019. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8:1657.   DOI
40 Sudhir, P. & Murthy, S. D. S. 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481-486.   DOI
41 van Ginneken, V. 2018. Some mechanism seaweeds employ to cope with salinity stress in the harsh euhaline oceanic environment. Am. J. Plant Sci. 9:1191-1211.   DOI
42 Eggert, A., Nitschke, U., West, J. A., Michalik, D. & Karsten, U. 2007. Acclimation of the intertidal red alga Bangiopsis subsimplex (Stylonematophyceae) to salinity changes. J. Exp. Mar. Biol. Ecol. 343:176-186.   DOI
43 Marcelino, V. R. & Verbruggen, H. 2015. Ecological niche models of invasive seaweeds. J. Phycol. 51:606-620.   DOI
44 Ben-Amotz, A. & Avron, M. 1983. Accumulation of metabolites by halotolerant algae and its industrial potential. Annu. Rev. Microbiol. 37:95-119.   DOI
45 Bollen, M., Pilditch, C. A., Battershill, C. N. & Bischof, K. 2016. Salinity and temperature tolerance of the invasive alga Undaria pinnatifida and native New Zealand kelps: implications for competition. Mar. Biol. 163:194.   DOI
46 Broderick, M. E. & Dawes, C. J. 1998. Seasonal photosynthetic and respiratory responses of the red alga Bostrychia tenella (Ceramiales, Rhodophyta) from a salt marsh and mangal. Phycologia 37:92-99.   DOI
47 Eggert, A. & Karsten, U. 2010. Low molecular weight carbohydrates in red algae: an ecophysiological and biochemical perspective. In Seckbach, J. & Chapman, D. J. (Eds.) Red Algae in the Genomic Age. Vol. 13. Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Dordrecht, pp. 445-456.
48 Gabriel, D., Schils, T., Parente, M. I., Draisma, S. G. A., Neto, A. I. & Fredericq, S. 2011. Taxonomic studies in the Schizymeniaceae (Nemastomatales, Rhodophyta): on the identity of Schizymenia sp. in the Azores and the generic placement of Nemastoma confusum. Phycologia 50:109-121.   DOI
49 Guiry, M. D. & Guiry, G. M. 2020. AlgaeBase: World-wide electronic publication, National University of Ireland, Galway. Available from: https://www.algaebase.org. Accessed Jan 20, 2020.
50 Gambichler, V., Zuccarello, G. C. & Karsten, U. 2021. Seasonal changes in stress metabolites of native and introduced red algae in New Zealand. J. Appl. Phycol. 33:1157-1170.   DOI
51 Garbary, D. J., D'Archino, R., Flack, B., Hepburn, C. D., Nelson, W. A., Pritchard, D. & Sutherland, J. E. 2020. First record of Bonnemaisonia hamifera (Bonnemaisoniales, Rhodophyta) in the South Pacific, from the South Island of New Zealand. N. Z. J. Mar. Freshw. Res. 54:167-176.   DOI
52 Lamare, M. D., Lesser, M. P., Barker, M. F., Barry, T. M. & Schimanski, K. B. 2004. Variation in sunscreen compounds (mycosporine-like amino acids) for marine species along a gradient of ultraviolet radiation transmission within doubtful sound, New Zealand. N. Z. J. Mar. Freshw. Res. 38:775-793.   DOI
53 Gunnarsson, K., Russell, S. & Brodie, J. 2020. Schizymenia jonssonii sp. nov. (Nemastomatales, Rhodophyta): a relict or an introduction into the North Atlantic after the last glacial maximum? J. Phycol. 56:324-333.   DOI
54 Muangmai, N., Preuss, M. & Zuccarello, G. C. 2015. Comparative physiological studies on the growth of cryptic species of Bostrychia intricata (Rhodomelaceae, Rhodophyta) in various salinity and temperature conditions. Phycol. Res. 63:300-306.   DOI
55 Lv, Y., Sun, P., Zhang, Y., Xuan, W., Xu, N. & Sun, X. 2019. Response of trehalose, its degrading enzyme, sucrose, and floridoside/isofloridoside under abiotic stresses in Gracilariopsis lemaneiformis (Rhodophyta). J. Appl. Phycol. 31:3861-3869.   DOI
56 Nelson, W. A., Dalen, J. & Neill, K. F. 2013. Insights from natural history collections: analysing the New Zealand macroalgal flora using herbarium data. PhytoKeys 30:1-21.   DOI
57 Russell, G. 1987. Salinity and seaweed vegetation. In Crawford, R. M. M. (Ed.) Plant Life in Aquatic and Amphibious Habitats. Blackwell, Oxford, pp. 35-52.