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Phylogeographic patterns in cryptic Bostrychia tenella species  
(Rhodomelaceae, Rhodophyta) across the Thai-Malay Peninsula
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Genetic diversity and distribution patterns of marine macroalgae are increasingly being documented in Southeast 
Asia. These studies show that there can be significant levels of genetic diversity and isolation between populations on 
either side of the Thai-Malay Peninsula. Bostrychia tenellla is a common filamentous red seaweed in the region and the 
entity is represented by at least two cryptic species. Despite being highly diverse and widespread, genetic variation and 
population structure of this species complex remains understudied, especially around the Thai-Malay Peninsula. We 
analyzed genetic diversity and inferred the phylogeographic pattern of specimens identified as B. tenella using the plastid 
RuBisCo spacer from samples from the Andaman Sea and the Gulf of Thailand. Our genetic analysis confirmed the occur-
rence of the two cryptic B. tenella species (B and C) along both coasts. Cryptic species B was more common in the area 
and displayed higher genetic diversity than species C. Historical demographic analyses indicated a stable population 
for species B, but more recent population expansion for species C. Our analyses also revealed that both cryptic species 
from the Andaman Sea possessed higher genetic diversity than those of the Gulf of Thailand. We also detected moderate 
to high levels of gene flow and weak phylogeographic structure of cryptic species B between the two coasts. In contrast, 
phylogeographic analysis showed genetic differences between populations of both cryptic species within the Andaman 
Sea. Overall, these results suggest that cryptic B. tenella species around Thai-Malay Peninsula may have undergone dif-
ferent demography histories, and their patterns of genetic diversity and phylogeography were likely caused by geological 
history and regional sea surface current circulation in the area. 
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INTRODUCTION

Genetic studies are increasingly exploring the patterns 
of diversity, evolutionary history, and phylogeography 
for many marine species (Bowen et al. 2016, Faria et al. 
2021). Phylogeographic analyses are often used to trace 
the process of marine species dispersal and population 
connectivity (e.g., Zuccarello and Martin 2016, Vieira et 
al. 2021), but can also detect cryptic species diversity and 
biogeographic breaks in the ocean (Fraser et al. 2013, 

Muangmai et al. 2015a). Such analyses are crucial to pro-
vide a useful framework for marine natural bioresource 
management and invasive species risk assessment (Teske 
et al. 2011, Bowen et al. 2016). 

In the Southeast Asia region, genetic diversity and phy-
logeographic patterns of macroalgae are being increasing-
ly documented. Many previous studies indicated differ-
ent levels of genetic diversity among macroalgal species. 
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mainly focused on the phylogenetic diversity of B. tenella, 
and therefore genetic diversity and distribution pattern of 
this cryptic species across the Thai-Malay Peninsula have 
not been fully examined. 

In this present study, we used the chloroplast-encoded 
RuBisCo spacer of B. tenellla across the Thai-Malay Pen-
insula to assess its genetic diversity and phylogeographic 
pattern. We also wanted to see if there were genetic dif-
ferences of these cryptic species between the Andaman 
coasts and the Gulf of Thailand, and then determined 
what factors could explain these distribution patterns. 

MATERIALS AND METHODS

Algal sampling

We surveyed B. tenella populations around rocky inter-
tidal areas of 12 sites along the Thai-Malay Peninsula: the 
Gulf of Thailand (T1–T6) and the Andaman Sea (A1–A6) 
(Table 1, Fig. 1), between 2017 and 2019. At each site, al-
gal samples were randomly collected, at least 10 samples 
per population, and preserved in silica gel for both mor-
phological and molecular analyses. For morphological 
observation, preserved samples were prepared by soak-
ing in water for 5 min and subsequently simultaneously 
stained and preserved in 1% aniline blue acidified with 
1% HCl and mounted in 50% glucose syrup (Karo Corn 
Syrup) on microscope slides. Species identification was 
based on previous publications (King and Puttock 1989, 
Zuccarello et al. 2015).

DNA extraction, polymerase chain reaction, and 
sequencing 

Genomic DNA isolation was performed using apical 
portions of dried algal specimens, with a modified Che-
lex extraction method (Zuccarello et al. 1999) or Norgen 
Biotek's Plant/Fungi DNA Isolation Kit (Norgen Biotek 
Corp., Thorold, Canada). The plastid-encoded RuBisCo 
spacer was selected for polymerase chain reaction (PCR) 
amplification. This fragment is a powerful region for ex-
ploring inter- and intra-species diversity in Bostrychia 
(Zuccarello and West 2003, Zuccarello et al. 2015). PCR 
was carried out using PCR Master mix Solution (i-Taq, 
iNtRON Biotechnology DR, Seongnam, Korea), in a total 
volume of 20 μL, consisting of 10 μL of i-Taq, 10 pmol of 
each primer and 2 μL of genomic DNA (~10–20 ng). PCR 
amplification profile and procedure followed Zuccarello 
and West (2003). All amplified products were cleaned 

For example, the brown alga Sargassum polycystum C. 
Agardh showed low genetic diversity, but higher diversity 
on the Andaman coast of Thailand (Kantachumpoo et al. 
2014), whereas, in the Philippines, high genetic diversity 
was detected in the red algae, Phycocalidia acanthophora 
(E. C. Oliveira & Coll) Santiañez (Dumilag and Aguinaldo 
2017, as Pyropia acanthophora) and Gracilaria salicornia 
(C. Agardh) E. Y. Dawson (Ferrer et al. 2019). Phylogeo-
graphic studies also indicated partial isolation between 
the Indian and Pacific Ocean populations of S. polycys-
tum (Kantachumpoo et al. 2014). This separation appears 
to be maintained by a geographic barrier (the Thai-Malay 
Peninsula) and the current oceanographic discontinuity 
between the Indian and Pacific oceans (Kantachumpoo 
et al. 2014, Wichachucherd et al. 2014).

Cryptic species are common in red algae (e.g., Zucca-
rello et al. 2002, Muangmai et al. 2014, Díaz-Tapia et al. 
2018) and are known to differ in many species-specific 
properties, although being morphologically identical. 
Their demographic histories can differ (Muangmai et al. 
2015a, 2022) and they can differ physiologically (Muang-
mai et al. 2015b) and chemically (Payo et al. 2011, Brace-
girdle et al. 2019). In addition, they can differ in their 
intertidal position (Muangmai et al. 2016). In the Indo-
Pacific, genetic studies revealed cryptic diversity in many 
red seaweeds (e.g., Payo et al. 2013, Gabriel et al. 2016, 
Saengkaew et al. 2016). Recognizing this cryptic algal di-
versity highlights a substantial undiscovered biodiversity, 
with implication for a need to continue a thorough inves-
tigation of red algae using data based on extensive mark-
ers and sampling. 

Bostrychia tenella (J. V. Lamouroux) J. Agardh is a ma-
rine filamentous red alga, which is distributed in tropical 
and subtropical regions (King and Puttock 1989, Zucca-
rello et al. 2015). This species naturally grows either on 
mangroves or in the high intertidal on rocks. Zuccarello 
et al. (2015) were able to resurrect the species B. binderi 
Harvey from B. tenella using DNA-based species delimi-
tation, but also showed cryptic species diversity within 
B. tenella, consisting of two species B and C with over-
lapping distributions. In Thailand, B. tenella is relatively 
common and widespread across the coastal areas based 
on morphological record (Lewmanomont et al. 1995). 
Recent genetic analysis indicated the occurrence of B. 
tenella species B and C on both eastern (the Gulf of Thai-
land – Pacific Ocean) and western coasts (Andaman Sea – 
Indian Ocean) of Thailand (Saengkaew et al. 2016). Addi-
tionally, coexistence of two cryptic species was reported 
from both coastal regions of the country (Saengkaew et 
al. 2016). However, due to the limited sampling this study 
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ods using IQ-TREE (Minh et al. 2020) and MrBayes v3.2 
(Ronquist et al. 2012), respectively. ML analyses were 
carried out with the HKY + G model as selected by Mod-
elFinder (Kalyaanamoorthy et al. 2017) and 1,000 boot-
strap replicates. The molecular evolution models for BI 
were selected using Kakusan 4 (Tanabe 2011). BI analyses 
were performed using a GTR + I + R model, with two par-
allel runs of four Markov chains for a million generations. 
We sampled one tree every 1,000 generations and then 
removed 2,500 trees (burn-in) before determining a con-
sensus tree and posterior probabilities. Both ML and BI 
trees were edited with the program FigTree v1.4.4 (Ram-
baut 2016). 

Number of haplotypes (H), haplotype (Hd), and nu-
cleotide (π) diversity were calculated for each population 
using DnaSP v6 (Rozas et al. 2017). Haplotype networks 
were produced using median joining generated in Po-
pART v1.7 (University of Otago, available from http://

using ExoSAP-IT (USB, Cleveland, OH, USA) and then 
sequenced commercially in both directions using PCR 
primers (U2Bio Inc., Seoul, Korea). 

Alignment, phylogenetic reconstructions, his-
torical demography, and population structure 
analysis

Sequences were edited, assembled, and aligned us-
ing the Geneious Prime software package (Biomatters, 
available from http://www.geneious.com/). Alignments 
of the RuBisCo spacer sequences were performed using 
the MAFFT algorithm (Katoh et al. 2002) and were further 
manually refined. Additional 12 sequences of B. tenella 
were obtained from GenBank and included in the align-
ment (Supplementary Table S1). 

Phylogenetic trees were reconstructed using maxi-
mum-likelihood (ML) and Bayesian inference (BI) meth-

Fig. 1. Distribution of Bostrychia tenella species B and C based on RuBisCo spacer haplotypes across the Thai-Malay Peninsula. Pie charts on the 
map indicate the relative proportions of haplotypes at each population (Table 1), with the total number of samples (n) per population given next 
to each pie chart. Green line indicates possible phylogeographic break zone within the Andaman Sea. (Inset) Map of Southeast Asia showing 
Thailand shaded in black and Malacca Strait shaded in red. 
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0.0000 to 0.0023 for species C (Table 1).
Both cryptic B. tenella species were found on both 

coastal areas of Thailand. Cryptic species B was widely 
distributed in Thailand, recorded in 9 out of 12 sampled 
populations, while species C was detected in 7 popula-
tions (Fig. 1). Additionally, both cryptic species were 
found to coexist at three of the 12 sites (A2 and A4 in the 
Andaman Sea and T4 from the Gulf of Thailand) (Fig. 1). 

Haplotype diversity and networks

Median-joining haplotype networks of cryptic species 
B and C constructed using RuBisCo spacer sequence (in-
cluding haplotypes from Zuccarello et al. 2015 and Saeng-
kaew et al. 2016) are presented in Fig. 2. Cryptic species B 
consisted of eight haplotypes in Thailand (B1, B8–B14) of 
which the B9–B14 are reported here for the first time. The 
haplotype network of species B was star-like with a central 
common haplotype B1 (80% of samples), found in nine 
of 12 populations sampled in the present study (Table 
1, Fig. 1) and in addition at three sampled sites (Phuket, 
Chumphon and Nakhon Si Thammarat) of Saengkeaw et 
al. (2016) and in Sabah, Malaysia (Zuccarello et al. 2015). 
Five novel B-haplotypes were only found in Andaman 
populations (A2, A5, and A6), while haplotype B12 was 
restricted to the Gulf of Thailand (populations T5 and T6) 
(Table 1, Fig. 1). 

Cryptic species C is represented by three haplotypes in 
Thailand (C1, C2, and C7) (Fig. 2). Haplotype C2 was rela-
tively common, accounting for 51% of all samples, and it 
occurred in all five populations where this species was 
found. C2 is the only haplotype of cryptic species C which 
was shared on both coasts of Thailand, while the other 
haplotypes were confined to the Andaman Sea (Table 1, 
Fig. 1). Haplotype C1 was shared in nearly all population 
of this species in the Andaman Sea, while haplotype C7 
was detected from populations A1 and A3 (Table 1, Fig. 1).

Demographic history and population differen-
tiation

The mismatch distribution showed a multimodal pair-
wise distance distribution of species B, but unimodal 
distribution of species C, indicating that species C has 
undergone a recent expansion (Supplementary Fig. S2). 
These demographic patterns were further supported by 
significant positive values of Tajima’s D test for species 
B (0.08932, p < 0.05), suggesting a stable population, 
but significant negative value for species C (-1.11856, p 
< 0.05), indicating a population expansion. However, the 

popart.otago.ac.nz.). Additionally, the historical demog-
raphy for each species (species B vs. species C) and popu-
lation (Andaman Sea vs. the Gulf of Thailand) levels was 
estimated by the analyses of mismatch distribution and 
neutrality tests, Tajima’s D (Tajima 1989) and Fu’s FS, as 
implemented in DnaSP. The analysis of mismatch distri-
bution uncovers the demographic history of populations, 
with population expansions producing a unimodal dis-
tribution, whereas stable population show a multimodal 
distribution (Rogers and Harpending 1992).  

Population differentiation was analyzed separately for 
each cryptic species for populations with at least 10 sam-
ples. The analysis was examined using two different ap-
proaches. First, pairwise population differentiation (FST) 
values were estimated with a significance level of 0.05 
determined by 10,000 permutations. Secondly, Analysis 
of Molecular Variance (AMOVA) was performed with sig-
nificance determined by 1,023 permutations. All analy-
ses were conducted in Arlequin v 3.5.1.3 (Excoffier and 
Lischer 2010).

RESULTS

Genetic diversity and distribution

The RuBisCo spacer with partial 3'-rbcL and 5'-rbcS 
gene sequences of 275–286 bp were successfully gener-
ated from 152 samples of 12 populations of B. tenella from 
both coasts of Thailand. Genetic distance among these 
sequences ranged from 0.0 to 6.6%. ML and BI analyses 
yielded almost complete topological congruence, and 
the ML tree is presented in Supplementary Fig. S1. Phy-
logenetic analyses demonstrated the occurrence of two 
different cryptic species of B. tenella: B and C, based on 
Zuccarello et al. (2015), in Thailand. Among 152 samples, 
113 samples were species B, while 39 samples belonged 
to species C. Intraspecific genetic variation varied from 
0.0–3.4% for species B and ranged from 0.0–1.3% for spe-
cies C. 

Haplotype and genetic diversity indices of the two 
cryptic species are presented in Table 1. Within species, 
both cryptic B. tenella species revealed a moderate ge-
netic diversity (Hd = 0.670 for species B and Hd = 0.629 
for species C), but higher nucleotide diversity for species 
B (π = 0.00807) than for species C (π = 0.00272) (Table 1). 
Within populations haplotype diversity (Hd) ranged from 
0.00 to 0.68 for species B and from 0.00 to 0.62 for spe-
cies C (Table 1). Nucleotide diversity (π) was relatively 
low, varying from 0.0000 to 0.0037 for species B, and from 
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observed between the lower Gulf populations (T5 and 
T6) (Supplementary Table S2). 

Pairwise FST values indicated that Andaman Sea popu-
lations of cryptic species C differed significantly. Popula-
tion A1 was genetically distinct from the other two popu-
lations, with FST values ranging between 0.40 to 0.51. Low 
genetic differentiation was observed between popula-
tions A3 and A4 (FST = 0.03) (Supplementary Table S3). 

The AMOVA was calculated to determine genetic dif-
ferentiation of cryptic species B between the Andaman 
Sea (A2, A5, and A6) and the Gulf of Thailand (T1–T6) 
populations. AMOVA results indicated that the propor-
tion of variation attributed to among populations within 
regions was 47.70% and within-population differences 
for 32.43%, whereas 19.87% occurred among regions 
(Supplementary Table S4). The F statistics revealed the 
significant and high genetic differences within popu-
lations (FST = 0.67), but low among regions (FCT = 0.19) 
(Supplementary Table S4). 

DISCUSSION

With wide-range sampling along the coasts of Thailand 
and chloroplast DNA analysis, we reconfirmed the occur-
rence of two distinct lineages, B and C, of B. tenella on 
both coastal regions of the country. In addition, we de-

estimates of Fu’s FS were not significant (1.12591, p > 0.1 
for species B, and 1.02017, p > 0.1 for species C). 

Analyses within biogeographic regions were only done 
for B. tenella species B. Species B from the Andaman Sea 
displayed a multimodal distribution (Supplementary Fig. 
S2) and significant positive value of Fu’s FS test (1.78007, 
p < 0.05), whereas species B from the Gulf of Thailand 
showed a unimodal distribution (Supplementary Fig. 
S2) plus negative values of Fu’s FS test (-0.54417, p > 
0.1), implying that the Gulf populations has more likely 
undergone recent expansion than the Andaman Sea 
populations. Values of Tajima’s D test were not signifi-
cant (1.74664, p > 0.1 for Andaman Sea population and 
1.34228, p > 0.1 for the Gulf population). 

Genetic differentiation (FST values) was moderate to 
low between populations of B. tenella species B from the 
Andaman Sea (A2, A5, and A6) and the Gulf of Thailand 
(T1–T6), with pairwise FST values ranging between 0.14 
and 0.69 (p < 0.05) (Supplementary Table S2). Significant 
moderate to low genetic differentiation was detected 
within Andaman Sea populations, with FST value in the 
range of 0.67 of 0.28 (A2, A5, and A6). While low genetic 
differentiation was discovered from the Gulf of Thailand 
population, with FST value in the range of 0.08 to 0.40 
(Supplementary Table S2). No genetic differentiation (FST 
= 0.00) was found among the upper Gulf populations (T1–
T4), while a slight genetic differentiation (FST = 0.08) was 

Fig. 2. Haplotype networks for cryptic Bostrychia tenella species B and C from RuBisCo spacer sequences. Colors represent the populations in 
the Andaman Sea (purple) and in the Gulf of Thailand (orange). Pie chart size represents the frequency of each haplotype. Solid circles correspond 
to haplotypes found in this study, whereas dashed and white colored circles correspond to haplotypes from Zuccarello et al. (2015). Small lines 
represent inferred missing haplotypes.
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tion of the Gulf of Thailand would have led to a potential 
founder event for these populations (Palmer 2004, Guo 
et al. 2020). Accordingly, this would result in higher ge-
netic diversity in Andaman Sea populations, and lower 
diversity in the Gulf population. Such a hypothesis has 
been applied to mangrove species in Southeast Asia (see 
Wee et al. 2014, Guo et al. 2020), and therefore could also 
apply to B. tenella and other seaweed around the Thai-
Malay Peninsula.  

Although previous studies have revealed strong phy-
logeographic patterns between the Gulf of Thailand and 
Andaman Sea in some marine species (e.g., Nguyen et al. 
2014, Wichachucherd et al. 2014, Seesamut et al. 2019, 
Panithanarak 2020), we did not find a clear phylogeo-
graphic signal in the B. tenella species complex across the 
Thai-Malay Peninsula. Our results showed that pairwise 
FST value between the Andaman Sea and the Gulf popu-
lations of cryptic species B demonstrated the presences 
of low to moderate levels of genetic differentiation, with 
only 19.87% of detected genetic differences found be-
tween the Andaman Sea and the Gulf of Thailand (AMO-
VA results), indicating moderate to high connectivity in 
cryptic species B. Our findings suggest the occurrence 
of gene flow around the Thai-Malay Peninsula. Further-
more, our demographic history analyses indicated that 
the Gulf populations of cryptic species B historically ex-
perienced a more recent expansion than Andaman Sea 
populations. Accordingly, we assume that the connectiv-
ity of B. tenella species B population across Thai-Malay 
Peninsula could possibly be associated with the historical 
subsidence of Sundaland, leading to a recent population 
expansion of this alga during the inundation of the Gulf of 
Thailand, and regional circulation patterns linking these 
two coastal areas (Haditiar et al. 2020). 

In the Andaman Sea, we detected some genetic differ-
ences between B. tenella species. Cryptic species B popu-
lation from Ranong province (A2) differed significantly 
from Trang and Satun provinces (A5 and A6). Addition-
ally, analysis of haplotype distribution indicated that 
haplotype B1 found in population A4 was also found in 
A5 and A6, but not in A2, implying the genetic break oc-
curring north to Phuket provinces (A4) (Fig. 1). Similarly, 
pairwise FST showed moderate genetic differentiation of 
cryptic species C populations between Ranong province 
(A1) and Phang Nga and Phuket provinces (A3 and A4). 
These results indicate that there is low gene flow between 
these populations of both cryptic species. Potential fac-
tors contributing to the genetic differentiation could be 
attributed to the ocean circulation patterns from North 
Indian Ocean and the Malacca Strait (Wyrtki 1961, Chat-

tected differences between these two cryptic species. Bos-
trychia tenella species B showed higher abundance and 
genetic diversity than species C. Different levels of ge-
netic diversity between cryptic species was also observed 
in other red seaweeds, e.g., Bostrychia intricata (Bory) 
Montagne (Muangmai et al. 2015a, 2022), Sarcopeltis 
skottsbergii (Setchell & N. L. Gardner) Hommersand, 
Hughey, Leister & P. W. Gabrielson (Billard et al. 2015, as 
Gigartina skottsbergii), and Asparagopsis taxiformis (Del-
ile) Trevisan (Zanolla et al. 2018). These previous studies 
suggested that these different levels of genetic variation 
among cryptic species was likely due to different evolu-
tionary and demographic histories. Our additional analy-
ses of mismatch distribution and Tajima’s D test further 
supported the different patterns of historic population 
demography in these two cryptic species of B. tenella. We, 
therefore, postulate that cryptic B. tenella species B and 
C in this area have different patterns of historical popu-
lation demography. However, the evolutionary history of 
cryptic B. tenella species needs further investigation with 
larger sample sizes and more variable markers (e.g., mi-
crosatellites).

We also observed different levels of genetic diversity in 
cryptic B. tenella species between the Andaman Sea and 
the Gulf of Thailand. Our data showed that genetic diver-
sity of Andaman Sea populations of B. tenella was higher 
than that of the populations in the Gulf of Thailand. Ad-
ditionally, we identified several novel haplotypes of cryp-
tic species B from the Andaman Sea, whereas only one 
new haplotype was found in the Gulf of Thailand. This is 
consistent with previous findings that the Andaman Sea 
harbored greater diversity, both genetic and at the spe-
cies levels than the Gulf of Thailand for seaweed (e.g., 
Kantachumpoo et al. 2014, Wichachucherd et al. 2014, 
Pongparadon et al. 2015) and other marine species, for 
example littoral earthworms (Seesamut et al. 2019), du-
gongs (Poommouang et al. 2021) and clams (Suppapan 
et al. 2021). Differences in genetic diversity across the 
Thai-Malay Peninsula could be driven by historical envi-
ronmental changes and different geographical features. 
The lowering of sea levels (~120 m below present-day sea 
level) during the Last Glacial Period (ca. 17,000 years ago) 
resulted in the formation of landmass in Southeast Asia 
known as Sundaland (Sathiamurthy and Voris 2006). The 
emergent Sundaland would have eliminated the habitat 
availability of marine taxa through the Gulf of Thailand 
and constrained populations to the east (South China 
Sea) and west (the Andaman Sea) coasts of the landmass 
(Cannon et al. 2009, Ludt and Rocha 2015). By the end 
of the last glaciation (ca. 11,000 years ago), recoloniza-
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