• Title/Summary/Keyword: Boring

Search Result 584, Processing Time 0.031 seconds

Waterproofing performance evaluation according to the number of layer for shield TBM segment hydrophilic rubber waterstop (쉴드 TBM 세그먼트 지수재의 배열수 변화에 따른 방수성능 평가)

  • Ham, Soo-Kwon;Jung, Hoon;Kim, Beom-Ju;Jeong, Kyeong-han;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 2020
  • The interest in the use of shield TBM (Tunnel Boring Machine) on the tunnel excavation has been increased rapidly in Korea. The shield TBM tunnel is generally designed as non-drainage tunnel. Consequently, if water leakage through the segment joints happens, big problems on the usage and stability of tunnel can be occurred. In this study, the variation of waterproof capacity of hydrophilic rubber waterstop by the construction error and excessive displacement of segment was studied. In particular, the waterproof capacity of each of single and double layer arrangements of hydrophilic rubber waterstop was examined to verify the efficiency of the double layer arrangement. The test results show that the single layer and double layer hydrophilic rubber waterstop showed the same waterproof performance. hydrophilic rubber waterstop has favorable on the offset, however unfavorable on the gap.

Time-series Analysis of Precision the Domestic Boring Investigation Data (국내 시추조사 자료 정밀도 시계열 분석)

  • Jang, Yonggu;Kim, Youngsun;Chae, Deokho;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.15-21
    • /
    • 2015
  • Since the introduction of 'the rule for computerizing subsoil investigation results and its application' in 2007, the DB construction of the national geotechnical information by Ministry of Land, Transport and Maritime Affairs (MOLTMA) has been performed. According to the Integrated DB Center of National Geotechnical Information, there have been 180 thousands borehole information stored in the system. In this study, the time-series analyses of precision on the most used information, the depth of stratum and ground water level, were performed to evaluate the effect of the initiation of the rule established in 2007. The precisions were evaluated based on the statistical analyses using kurtosis and normal distribution. Based on the results, the increase of precision after 2007 and the affirmative effects of the rule established in 2007 are confirmed. Furthermore, the precision of the regional information can be achieved with the precision analyses on the information from various areas.

Suggestion of New Rock Classification Method Using the Existing Classification Method (기존의 암반분류법의 조합에 의한 새로운 암반평가법의 제안)

  • SunWoo Choon;Jung Yong-Bok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Rock mass classification systems such as RMR and Q system have been widely served as a simple empirical approach for the design of various rock mass structures in the stage of site survey as well as under the construction. For the RQD determination, the boring is partially carried out and what is more, the survey boring is not normally carried out under construction. Therefore RQD is frequently determined by empirical method or indirect method. Since it is difficult to determine the discontinuity characteristics such as RQD, spacing, persistence, filling and so on, it is essential to develop suitable and simple systems without drilled core and a cert 없 n number of representative parameters. One of the primary objectives of the classification systems for a practicing engineer has been to make it simple to use as a preliminary design tool for the structures in rock mass. In the present study, the modifications for both the RMR and GSI system are suggested by authors to introduce new classification system as well as to improve the scope of some of the existing classification systems for a practicing engineer.

Experimental verification for prediction method of anomaly ahead of tunnel face by using electrical resistivity tomography

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.475-484
    • /
    • 2020
  • The prediction of the ground conditions ahead of a tunnel face is very important, especially for tunnel boring machine (TBM) tunneling, because encountering unexpected anomalies during tunnel excavation can cause a considerable loss of time and money. Several prediction techniques, such as BEAM, TSP, and GPR, have been suggested. However, these methods have various shortcomings, such as low accuracy and low resolution. Most studies on electrical resistivity tomography surveys have been conducted using numerical simulation programs, but laboratory experiments were just a few. Furthermore, most studies of scaled model tests on electrical resistivity tomography were conducted only on the ground surface, which is a different environment as compared to that of mechanized tunneling. This study performed a laboratory experimental test to extend and verify a prediction method proposed by Lee et al., which used electrical resistivity tomography to predict the ground conditions ahead of a tunnel face in TBM tunneling environments. The results showed that the modified dipole-dipole array is better than the other arrays in terms of predicting the location and shape of the anomalies ahead of the tunnel face. Having longer upper and lower borehole lengths led to better accuracy of the survey. However, the number and length of boreholes should be properly controlled according to the field environments in practice. Finally, a modified and verified technique to predict the ground conditions ahead of a tunnel face during TBM tunneling is proposed.

A Study on Development of PHC pile driving force increase device on soft ground (연약지반상 PHC파일 항타력 증대장치 개발에 관한연구)

  • Kim, Jong-Gil;Lee, Young-Joo
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.219-224
    • /
    • 2020
  • The purpose of this study is to develop a device to replace the pre-boring method, which is generally constructed, to prevent pile damage caused by tension cracks that reason from tension waves generated during PHC pile construction on soft ground. Tension cracks are caused by tension waves from the hammer striking during the PHC pile hitting on the soft ground, which in turn leads to faulty construction. In order to prevent the occurrence of tension waves generated during driving, apply separate driving force increasing device to prevent the generation of tension waves, and pile damage as well. Also, it is an eco-friendly construction method that reduces smoke and noise by improving construction speed, reducing construction costs, and able to small equipment when developing equipment. This development equipment is a piece of effective equipment that can pioneer the Saemangeum reclamation area, the South-east Asian construction market, where the Deep soft ground is distributed.

Three Dimensional Numerical Analysis on Rock Cutting Behavior of Disc Cutter Using Particle Flow Code (3차원 입자결합모델을 이용한 디스크 커터의 암석절삭에 관한 연구)

  • Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.54-65
    • /
    • 2013
  • The LCM (Linear Cutting Machine) test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. In order to overcome this problem, lots of numerical studies have been performed. In this study, the PFC3D (Particle Flow Code in 3 Dimension) has been adopted for numerical analysis on optimum cutter spacing and failure aspects of Busan Tuff. The optimum cutting condition with s/p ratio of 16 and minimum specific energy of $14MJ/m^3$ was derived from numerical analyses. The cutter spacing for Busan Tuff had the good agreements with those of LCM test and numerical analysis by finite element method.

Review of Technical Issues for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM의 시공을 위한 기술적 고찰)

  • Jeong, Hoyoung;Zhang, Nan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.1-24
    • /
    • 2018
  • The use of TBM (tunnel boring machine) gradually increases in worldwide tunneling projects. TBM machine are often applied to more difficult and complex geological conditions in urban area, and many problems and difficulties have been reported due to these geological conditions. However, in Korea, there is a lack of research on difficult grounds so far. This paper discussed general aspects of investigation method, and problems of TBM tunneling in difficult grounds. Construction cases that passed through the difficult grounds in worldwide were analyzed and the typical difficult grounds were classified into 11 cases. For each case, the definition and general problems were summarized. Particularly, for mixed ground and boulder ground, and fault zone, which are frequent geological conditions in urban area with shallow depth, classification system, investigation methods and major considerations were discussed, and proposed the direction of future research. This paper is a basic study for the development of TBM construction technology in difficult ground, and it is expected that it will be useful for related research and construction of TBM in difficult ground in the future.

Shell Necrosis of Haliotis discus hannai by Mastigocoleus sp. (Cyanophyta) in Korea (남조류, Mastigocoleus sp.에 의한 한국산 참전보의 패각 괴사증)

  • 최상덕;윤장택;조용철
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.465-474
    • /
    • 1998
  • Shell necrosis, which is found in the juvenile stage of Haliotis discus hannai in th culture process, was examine in this study. In the necrosis shell, bacteria of rod type and a blue green algal species with heterocyst were observed. However, it appears to be caused by a boring blue green alga, Mastigocoleus sp., as based on SEM data. At the time of its infection, the shell was discolored from green into bright-grey, and then began to be brittle at the 4th to 6th breathing hole. After 60 days of culture, necrosis occurred in the breathing holes with many brown tiny colony, and continued to 3 years after culture. This shell necrosis was found in the tank culture system in land rather than in the cage culture system in sea, and greatly affected to the growth of Haliotis discus hannai, resulting in very small size of 16mm in 3 year old shell.

  • PDF

Natural Enemies of Wood Borers and Seasonal Occurrence of Major Natural Enemies of Monochamus saltuarius on Pine Trees (소나무류 천공충의 천적종류 및 북방수염하늘소 주요천적의 발생소장)

  • Kim, Jong-Kuk;Won, Dae-Sung;Park, Yong-Chul;Koh, Sang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.3
    • /
    • pp.439-445
    • /
    • 2010
  • Wood boring insects collected around bait logs of Pinus densiflora and Pinus koraiensis were 45 species from 4 families, which were composed of 21 species of Cerambycidae, 9 species of Curculionidae, 2 species of Rhynchophoridae, and 13 species of Scolytidae. Parasitic or predatory insects were 35 species from 15 families in 6 orders. Among the natural enemies, 2 parasitoids of Dolochomitus nakamurai and Echthus reluctator, and 2 predators of Trogossita japonica and Thanassimus lewisi, were observed frequently attacking a vector insect, Monochamus saltuarius, which has been known to transmit pine wood nematode. Bursaphelenchus xylophilus. Adults of D. nakamurai and E. reluctator emerged during early April and early May. Both parasitoids laid eggs on M. saltuarius prepupa and papa, which passed winter inside the pupal chamber. The general predators, T. japonica and T. lewisi, preyed actively during April and October, and attacted almost all of developmental stages of wood borers.

Improvement Plan of Excavation Performance Based on Shield TBM Performance Prediction Models and Field Data (쉴드 TBM 성능예측모델과 굴진자료 분석을 통한 굴진성능 개선방안)

  • Jung, Hyuksang;Kang, Hyoungnam;Choi, Jungmyung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.43-52
    • /
    • 2010
  • Shield method is the tunnel boring method that propels a steel cylinder in the ground and excavates tunnels at once. After Marc Isambard Brunel started using the method for the Thames Riverbed Tunnel excavation in London, many kinds of TBM (Tunnel Boring Machine) developed and applied for the construction of road, railway, electricity channel, pipeline, etc. In comparison with NATM concept that allows to observe ground condition and copes with difficulty. The machine selected before starting construction is not able to be changed during construction in shield TBM. Therefore the machine should be designed based on the ground survey result and experiment, so that the tunnel might be excavated effectively by controlling penetration speed, excavation depth and cutter head speed according to the ground condition change. This research was conducted to estimate penetration depth, excavate speed, wear of disc cutter on Boondang Railway of the Han Riverbed Tunnel ground condition by TBM performance prediction models such as NTNU, $Q_{TBM}$, Total Hardness, KICT-SNU and compare the estimated value with the field data. The estimation method is also used to analyze the reason of poor excavation efficiency at south bound tunnel.