• Title/Summary/Keyword: Bootstrap Test Procedure

Search Result 21, Processing Time 0.027 seconds

Bootstrap Median Tests for Right Censored Data

  • Park, Hyo-Il;Na, Jong-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.423-433
    • /
    • 2000
  • In this paper, we consider applying the bootstrap method to the median test procedures for right censored data. For doing this, we show that the median test statistics can be represented by the differences of two sampler medians. Then we review to the re-sampling methods for censored dta and propose the test procedures under the location translation assumption and Behrens-Fisher problem. Also we compare our procedures with other re-sampling method, which is so-called permutation test through an example. Finally we show the validity of bootstrap median test procedure in the appendix.

  • PDF

Bootstrap Testing for Reliability of Stess-Strength Model with Explanatory Variables

  • Park, Jin-Pyo;Kang, Sang-Gil;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.263-273
    • /
    • 1998
  • In this paper, we consider some approximate testings for the reliability of the stress-strength model when the stress X and strength Y each depends linearly on some explanatory variables z and w, respectively. We construct a bootstrap procedure for testing for various values of the reliability and compare the power of the bootstrap test with the test based on Mann-Whitney type estimator by Park et.al.(1996) for small and moderate sample size.

  • PDF

Bootstrap Method for Row and Column Effects Model

  • Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.521-529
    • /
    • 2005
  • In this paper, we consider a bootstrap method to the 'row and column effects model' (RC model) to analyze a contingency table with ordered variables. We propose a bootstrap procedure for testing of independence, equality of intervals, and goodness of fit in the RC model. A real data example is included.

Data-Mining Bootstrap Procedure with Potential Predictors in Forecasting Models: Evidence from Eight Countries in the Asia-Pacific Stock Markets

  • Lee, Hojin
    • East Asian Economic Review
    • /
    • v.23 no.4
    • /
    • pp.333-351
    • /
    • 2019
  • We use a data-mining bootstrap procedure to investigate the predictability test in the eight Asia-Pacific regional stock markets using in-sample and out-of-sample forecasting models. We address ourselves to the data-mining bias issues by using the data-mining bootstrap procedure proposed by Inoue and Kilian and applied to the US stock market data by Rapach and Wohar. The empirical findings show that stock returns are predictable not only in-sample but out-of-sample in Hong Kong, Malaysia, Singapore, and Korea with a few exceptions for some forecasting horizons. However, we find some significant disparity between in-sample and out-of-sample predictability in the Korean stock market. For Hong Kong, Malaysia, and Singapore, stock returns have predictable components both in-sample and out-of-sample. For the US, Australia, and Canada, we do not find any evidence of return predictability in-sample and out-of-sample with a few exceptions. For Japan, stock returns have a predictable component with price-earnings ratio as a forecasting variable for some out-of-sample forecasting horizons.

A Study on the Relationship between Vertical Separation and Operational Efficiency of Railway Industry (철도산업의 수직분리와 운영효율성의 관련성에 관한 연구)

  • Kim, Seong-Ho;Choi, Tae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.844-851
    • /
    • 2009
  • Since 1990s, the European railway sector has undergone both a vertical separation and a vertical integration. Recently Simar and Wilson (2008) provides a bootstrap test procedure for testing whether two groups' mean efficiencies are equivalent. The purpose of this paper is to ascertain the relationship between vertical separation and operational efficiency of railway industry using the Simar and Wilson's bootstrap test procedure not used in previous studies with a data set of 20 European countries from 1998 to 2005. From the value of test statistic it seems that the mean operational efficiencies of vertically separated railway industry were higher than those of vertically integrated railway industry. However the p-value indicates that the differences of mean operational efficiencies are not significat at any meaningful level.

A parametric bootstrap test for comparing differentially private histograms (모수적 부트스트랩을 이용한 차등정보보호 히스토그램의 동질성 검정)

  • Son, Juhee;Park, Min-Jeong;Jung, Sungkyu
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • We propose a test of consistency for two differentially private histograms using parametric bootstrap. The test can be applied when the original raw histograms are not available but only the differentially private histograms and the privacy level α are available. We also extend the test for the case where the privacy levels are different for different histograms. The resident population data of Korea and U.S in year 2020 are used to demonstrate the efficacy of the proposed test procedure. The proposed test controls the type I error rate at the nominal level and has a high power, while a conventional test procedure fails. While the differential privacy framework formally controls the risk of privacy leakage, the utility of such framework is questionable. This work also suggests that the power of a carefully designed test may be a viable measure of utility.

A Unit Root Test Based on Bootstrapping

  • Shin, Key-Il;Kang, Hee-Jeong
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.257-265
    • /
    • 1996
  • We consider nonstationary autoregressive autoregressive process with infinite variance of error. In the case of infinite cariance, the limiting distribution of the estimated coefficient is different from that under the finite cariance assumption. In this paper we show that the bootstrap method can be used to approximate the distribution of ordinary least squares estimator of the coefficient in the first order random walk process with infinite variance through some empirical studies and we suggest a test procedure based on bootstrap method for the unit root test.

  • PDF

A Bootstrap Test of Independence for an Absolutely Continuous Bivariate Exponential Model

  • Lee, In Suk;Kim, Dal Ho;Cho, Jang Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.2
    • /
    • pp.77-86
    • /
    • 1996
  • In this paper, we consider the problem of testing independence in the absolutely continuous bivariate exponential distribution of Block and Basu(1974). We construct a bootstrap procedure for testing zero and non-zero values of the parameter ${\lambda}_3$ which measures the degree of dependence and compare the power of the bootstrap test with likelihood ratio test(LRT) by Gupta et al.(1984) and the test based on maximum likelihood estimator(MLE) $\hat{{\lambda}}_3$ by Hanagal and Kale(1991) for small and moderate sample sizes.

  • PDF

Comparison and Evaluation of Performance for Standard Control Limits and Bootstrap Percentile Control Limits in $\bar{x}$ Control Chart ($\bar{x}$ 관리도의 표준관리한계와 부트스트랩 백분률 관리한계의 수행도 비교평가)

  • 송서일;이만웅
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.347-354
    • /
    • 1999
  • Statistical Process Control(SPC) which uses control charts is widely used to inspect and improve manufacturing process as a effective method. A parametric method is the most common in statistical process control. Shewhart chart was made under the assumption that measurements are independent and normal distribution. In practice, this assumption is often excluded, for example, in case of (equation omitted) chart, when the subgroup sample is small or correlation, it happens that measured data have bias or rejection of the normality test. A bootstrap method can be used in such a situation, which is calculated by resampling procedure without pre-distribution assumption. In this study, applying bootstrap percentile method to (equation omitted) chart, it is compared and evaluated standard process control limit with bootstrap percentile control limit. Also, under the normal and non-normal distributions, where parameter is 0.5, using computer simulation, it is compared standard parametric with bootstrap method which is used to decide process control limits in process quality.

  • PDF

Classification for intraclass correlation pattern by principal component analysis

  • Chung, Hie-Choon;Han, Chien-Pai
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.589-595
    • /
    • 2010
  • In discriminant analysis, we consider an intraclass correlation pattern by principal component analysis. We assume that the two populations are equally likely and the costs of misclassification are equal. In this situation, we consider two procedures, i.e., the test and proportion procedures, for selecting the principal components in classifica-tion. We compare the regular classification method and the proposed two procedures. We consider two methods for estimating error rate, i.e., the leave-one-out method and the bootstrap method.