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Bootstrap Testing for Reliability of Stess-Strength
Model with Explanatory Variables
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Abstract

In this paper, we consider some approximate testings for the reliability of the
stress-strength model when the stress X and strength Y each depends linearly
on some explanatory variables z and w, respectively. We construct a bootstrap
procedure for testing for various values of the reliability and compare the power
of the bootstrap test with the test based on Mann-Whitney type estimator by
Park et.al.(1996) for small and moderate sample size.
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1. Introduction

An important extension of the stress-strength model allows the strength X and
the stress Y to depend on some explanatory variables. In many cases, an exper-
imenter has access to the measurements of some explanatory variables that affect
the strength or influence the stress. The additional information can play an impor-
tant role in the analysis by extending the classical stress-strength model to include
explanatory variables.

Duncan(1986) gave some specific examples of the strength-stress model with ex-
planatory variables. Guttman, Johnson, Bhattacharyya and Reisser (1988) obtained
an approximate confidence interval for reliability, R = P(X < Yz, w). Park, Kim
and Park(1996) considered Mann-Whitney type statistic to estimate the reliability.

Since the true distribution of the estimator for R is often skewed and biased for
a small sample and/or large value of R, the power of testing based on Park et. al.
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may deteriorate the accuracy. So we will use the bootstrap method to rectify these
problems.

Efron(1979, 1981) initially introduced the bootstrap method to assign the accu-
racy for an estimator. General theory for bootstrap hypothesis testing is discussed
briefly by Hinkley(1988) during a survey of bootstrap methods, and at greater length
by Hinkely(1989). Beran(1988) discussed pivoting in the context of bootstrap hy-
pothesis testing. Hall and Wilson(1991) and Becher(1993) illustrated the two guide-
lines of pivoting and sampling under null hypothesis by applying bootstrap tests to
specific data sets.

In this paper, we construct the bootstrap procedure for testing reliability using
some bootstrap methods and compare the powers with the test based on the Mann-
Whitney type statistic via Monte Carlo simulation in small and moderate samples.

2. Preliminaries

Suppose that X is related to p explanatory variables z and Y is related to ¢
explanatory variables w according to the linear relationships,

X=p+p(z-2)+6 (1)

and

Y=v4+9(w-—W)+e (2)

where 8 = (B1,02,---,8p) and v = (71,72, -+,7,)" are regression coefficients
and the errors § and e are independent random variables with distribution F' and
G, respectively, such that E(§) = E(e) = 0, Var(d) = 0? < oo and Var(e) =
72 < co. Here, the errors § and € are not necessarily normal. Suppose that (X;, z;)
and (Y;,w;), i =1,---,m, j = 1,---,n be samples from the models in (1), and
let 2 = m Y22, W =n"1Y" w; Also let P(f) = P(X < Y|z, w), where
6 = (u,v, 8',7'). Then by Park, et.al.(1996), P() can be estimated by

U() = (mn)™! iir@ —& <) = (mn)—liz i (3)

i=1 j=1 i=1 j=1

where I denotes the indicator function,
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F=-0+0-B(z-2)+7(w—w) and U, =10 ¢ <7).
Under mild conditions Park(1995) established the asymptotic normality of vN [T (8)—
P(0)]. That is,
VN [0® - P@] ~* NO,). (4)

The consistent estimator of the asymptotic variance for vN [U @) ~ P(0)] is
given

~ N o aA PN A
X m[(m - 1)@ - U0 + (n— 1)z — U(B)%) + UO) - U(H)*?
+ N@z-2)[(Z-2)(Z-Z)] \(z - 2)p30°
+ N(w - W) [(W - W) (W — W) (w — W)ps72, (5)
where ~ ~
o 20im1 201 2ok Ui Uy
PL= mn(m — 1) ’
L R Shs wUi Ui
P2 = mn(n — 1) ’
_ H@E+h)—H@E-h)
- 2h ’
o TP (Xi— - (- 8))
0° =
(m—p—1) ’
2 _ Tia(¥ =D — y'(w; - W))?
(n—q—1) ’

here H(z) = X7, Y, I(5; —€; < z)/mn and h is a bandwidth of N®, —1/2 «
b < 0. Thus we construct an approximate test for Hy : P(0) = Ry v.s. H; : P(f) «
Ry based on U(f) as follows.

[ZANR VAN

Suaw (@,0) = {1’ NIO@) - RifVE < -z 0

0, otherwise

where 2, is the upper 100a% quantile of the standard normal distribution.
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3. The Bootstrap Procedure

In this section we consider the bootstrap test for Hy : P(0) = Ry v.s. H; : P(9)
< Ry based on some bootstrap methods. Related to the Park et.al.’s procedure is
the bootstrap procedure which is a resampling scheme that one attempts to learn
the sampling properties of a statistic by recomputing its value on the basis of a
new sample realized from the original one. The bootstrap procedure provides an
approximate testing by using the plug-in principle for P(6).

The bootstrap procedure can be described as follows:

(1) Select B independent bootstrap samples (X,z)*!, (X,z)*?,---,(X,2z)*B, each
consisting of m data values drawn with replacement from (X,z). And select B
independent bootstrap samples (Y, w)*!, (Y,w)*?,--., (Y, w)*5, each consisting of
n data values drawn with replacement from (Y, w), respectively.

(2) Evaluate the bootstrap relpication corresponding to each bootstrap samples,

U'(E*b)z(mn)—lzzﬁi;*b> b=1,2,---,B, (7)

where ﬁ;* is the bootstrap version of ﬁ;
Therefore we propose the bootstrap test by using two methods, that is, percentile,
percentile-t methods.

3.1. Percentile method

The test by the bootstrap percentile method(percentlle test) is obtained by per-
centiles of the empirical bootstrap distribution of U (6*). Let H* be the empirical
cumulative distribution function of U (9*) '

Then it is constructed by H*(s) = v Ly B (U0 < s), where s is arbitrary
real value and I(-) is an indicator function.

Then we construct the percentile test function for Hy : P(f) = Ry vs.
H; : P(8) < Ry as follows:

FH) < ot
¢PER(x’y) = {1’ U(Q) . “ ) (8)
0, otherwise

where ¢} is calculated as a number such that H *(s) = a, that is,

= B (o) =inf{s : H*(s) < a}. (9)

In other word, H*' (@) is the (B - a)th value in the ordered list of the B repli-
cations of U (é*)
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3.2 Percentile-t method

The test by the bootstrap percentile-t method(percentile-t test) is constructed
by using the bootstrap distribution of an _approximate pivotal quantity for U(6')
instead of the bootstrap distribution of U/ (0) We define an approximate bootstrap
pivotal quantity for U (Q) by

VN [0@)-0@®)

U@)srvp = ; , (10)
%
where 5* is the bootstrap version of 5. R e
We compute the empirical distribution function Hip;p, of U(8 )stup by
~ A*b
Hiryp(s) = ZI( )sTup < 8), (11)

for all real value s.
Then we construct the percentile-t test function for Hy : P(6) = Ry v.s.
H;, : P(6) < Ry as follows:

%_t(x,y):{L VN (0@ - Rol/VE < & (12)

0, otherwise

where ¢ = ﬁg;UD(a) =inf{s : fI;TUD(s) < a}.

4. Comparisons

In this Section, we compare the power of the bootstrap test presented in Section
3 with the test based on Mann-Whitney type estimator by Park et.al.(1996) for
small and moderate sample size. The distributions of errors under the consideration
are as follows:

CaseI:d,e ~ N(0,1)

CaseIl: 4 ~ 0.95N(0,1)+0.05N(0,3%) and ¢ ~ 0.95N(0,1) +0.05N(0, 10%)

Case IIT : §,¢ ~ 0.9N(0,1) + 0.1N(0, 10%).

As one can see, we consider the standard normal distributions in Case I and the
variance-contaminated normal distributions in Case II and III. For all such cases,
both ¢ and € have symmetric and unimodal distributions. Thus, every § — ¢ have
symmetric distributions which are unimodal.
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In this Section, we compare the power performance of the test Hy : P(6) = 0.9
v.s. Hy : P(6) <0.9. To the actual powers against Hy, we take the values of P(6) un-
der Hy(say Py(f)) as Py(8) = 0.85,0.80,0.75, - - -, 0.60. So the regression parameters
1, v, B, are chosen so that P(§) takes the values of 0.85, 0.80, 0.75, 0.70, 0.65, 0.60.
For the sake of convenience, we only consider the simple linear regression models
for X and Y. We set both z; and w; as +(: — 1)/n, ¢ =1,2---,n/2, symmetri-
cally around the point zero. For each case, we try simulation when z = Z = 0 and
w=w=0.

The equally chosen sample sizes n and m are 10, 20, 30, and bandwidth A is se-
lected as (m+n)~%2. The number of pairs of samples generated for each combination
of P(#) and n(= m) is 1000. For each independent random samples, the approxi-
mated bootstrap tests were constructed by each method with bootstrap replications
B = 1000 times. Also the used significance levels o is 0.05 and 0.10. Tables 4.1-4.3
give the actual powers of the approximated tests, respectively. The graphs for some
cases of tables 4.1-4.3 are given Figures 4.1-4.2.

Figure 4.1 represents the plot of the actual powers against reliabilities when
n = m = 10 in case II. Figure 4.1 illustrates that the test function ¢per—¢(-) are
nearly always better than test function ¢pw (-) regardless of the reliabilities.

Figure 4.2 represents the plot of the actual powers against sample sizes when
P(8) = 0.8 in Case II. From Figure 4.2, we show that the actual powers of per—t(+)
is better than that of ¢y (-). Since simulation results for other values of reliabilities
are similar, we don’t report here.

Consequently, it is observed the test based on @, —(-) performs better.

Bootstrap methods can require even more computing than Park et.al.’s method,
and up to hundreds to thousands of times more computing time than using Park
et.al.’s method. However, with high speed computers, even this may not be a severe
problem, and the improvement may often be worth the extra cost.
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Table 4.1 The Actual Powers of the Tests for Hy : P(§) = 0.90
v.s. Hy: P(8) = Py(8) in Case I

n(=m)

Py(6)

Smw ()

opeR(-)

d)Per—t(')

10

0.85
0.80
0.75
0.70
0.65
0.60

0.2650(0.1200)
0.4070(0.2380)
0.5890(0.4200)
0.7130(0.5400)
0.8310(0.7010)
0.8680(0.7680)

0.2830(0.1140)
0.4120(0.2270)
0.5760(0.3960)
0.6950(0.5270)
0.7910(0.6930)
0.8570(0.7470)

0.4120(0.1950)
0.5600(0.3070)
0.6980(0.4480)
0.7940(0.5370)
0.8540(0.6280)
0.8910(0.6920)

20

0.85
0.80
0.75
0.70
0.65
0.60

0.6310(0.4490)
0.8560(0.7240)
0.9220(0.8360)
0.9810(0.9340)

(
(
(
(

(
0.4030(0.2240)
(

(

E
0.9950(0.9770)

0.3980(0.1910)
0.6360(0.4370)
0.8420(0.6920)
0.9080(0.7970)
0.9730(0.9260)
0.9910(0.9610)

0.5170(0.3450)
0.7210(0.5740)
0.9020(0.8050)
0.9840(0.8750)
0.9910(0.9600)
0.9970(0.9800)

30

0.85
0.80
0.75
0.70
0.65
0.60

0.4820(0.2810)
0.7840(0.6200)
0.9560(0.8960)
0.9860(0.9610)
0.9970(0.9900)
0.9990(0.9980)

0.4880(0.2710)
0.7790(0.5940)
0.9500(0.8710)
0.9790(0.9650)
0.9960(0.9860)
0.9990(0.9960)

TN TN TN N N N

0.5840(0.4200)
0.8440(0.7310)
0.9700(0.9270)
0.9930(0.9710)
1.0000(0.9950)
1.0000(0.9990)
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Table 4.2 The Actual Powers of the Tests for Hy : P(f) = 0.90
v.s. Hy : P(8) = Py(8) in Case II.

n(=m)

Py(6)

dmw (*)

¢peR(")

¢Per—t(')

10

0.85
0.80
0.75
0.70
0.65
0.60

0.2440(0.1290)
0.4300(0.2380)
0.5900(0.3850)
0.7220(0.5320)
0.8080(0.6260)
0.8520(0.7410)

0.2850(0.1210)
0.4290(0.2490)
0.5800(0.3630)
0.7230(0.5190)
0.7950(0.5900)
0.8410(0.7280)

0.3980(0.1960)
0.5570(0.3080)
0.6830(0.4160)
0.7790(0.5340)
0.8440(0.5920)
0.8920(0.6880)

20

0.85
0.80
0.75
0.70
0.65
0.60

0.3840(0.2130)
0.6690(0.4810)
0.8290(0.6860)
0.9500(0.8590)
0.9820(0.9400)
0.9960(0.9800)

0.3810(0.2270)
0.6640(0.4700)
0.8150(0.6720)
0.9480(0.8310)
0.9770(0.9300)
0.9930(0.9790)

0.4960(0.3150)
0.7640(0.6040)
0.8880(0.7720)
0.9660(0.9190)
0.9890(0.9650)
0.9980(0.9870)

30

0.85
0.80
0.75
0.70
0.65
0.60

0.4610(0.2720)
0.7840(0.6020)
0.9300(0.8590)
0.9860(0.9610)
0.9980(0.9950)
0.9990(0.9980)

0.4570(0.2540)
0.7820(0.5910)
0.9220(0.8440)
0.9850(0.9570)
0.9960(0.9880)
0.9990(0.9960)

(
0.5700(0.3780)
0.8520(0.7200)
0.9620(0.8940)
0.9940(0.9830)
0.9980(0.9950)
1.0000(0.9990)
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Table 4.3 The Actual Powers of the Tests for Hy : P(g) = 0.90
v.s. Hy: P(8) = Py(8) in Case IIL

n{=m)

Py(0)

darw ()

¢peR(*)

¢Per—t(')

10

0.85
0.80
0.75
0.70
0.65
0.60

0.2710(0.1360)
0.4530(0.2650)
0.5980(0.3980)
0.6980(0.5250)
0.8350(0.6540)
0.8640(0.7480)

0.2790(0.1270)
0.4610(0.2590)
0.5450(0.3800)
0.6790(0.5140)
0.7980(0.6350)
0.8580(0.7320

0.3870(0.1930)
0.5820(0.3410)
0.6940(0.4150)
0.7710(0.5250)
0.8700(0.6120)
0.8700(0.6710)

20

0.85
0.80
0.75
0.70
0.65
0.60

0.4170(0.2220)
0.6580(0.4620)

0.9290(0.8570)
0.9810(0.9410)
0.9930(0.9800)

)
0.4050(0.1920)
0.6380(0.4570)
0.8180(0.6810)
0.9270(0.8480)
0.9780(0.9360)
0.9880(0.9740)

0.5300(0.3440)
0.7520(0.5690)
0.8850(0.7780)
0.9560(0.8970)
0.9910(0.9660)
0.9960(0.9840)

30

0.85
0.80
0.75
0.70
0.65
0.60

0.4640(0.2930)
0.8080(0.6340)
0.9270(0.8660)
0.9830(0.9610)
0.9990(0.9950)
0.9990(0.9980)

(
(

E
0.8280(0.6920)
(

(

(

(

(

0.4590(0.2810)
0.7880(0.5810)
0.9260(0.8410)
0.9780(0.9500)
0.9980(0.9870)
0.9990(0.9990)

0.5750(0.4030)
0.8740(0.7410)
0.9500(0.9060)
0.9870(0.9740)
0.9990(0.9970)
0.9990(0.9990)
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Figure 4.1 Plot of the actual powers against reliabilities when n = m = 10 in
case II.
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Figure 4.2 Plot of the actual powers against sample sizes when Py(8) = 0.8 in
Case II.



