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Abstract

In discriminant analysis, we consider an intraclass correlation pattern by principal
component analysis. We assume that the two populations are equally likely and the
costs of misclassification are equal. In this situation, we consider two procedures, i.e.,
the test and proportion procedures, for selecting the principal components in classifica-
tion. We compare the regular classification method and the proposed two procedures.
We consider two methods for estimating error rate, i.e., the leave-one-out method and
the bootstrap method.
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1. Introduction

We consider the problem of classifying a px1 observation X of unknown origin to one of
two multivariate normal populations m; : N(u(?,% ), i=1, 2, where the covariance matrix
has the intraclass correlation pattern, i.e., all variances are equal and covariances are equal.
The covariance matrix can be written as ¥ = o2 [(1-)I p + p J], where I is a pxp identity
matrix, J = ee and e is a px1 vector of one’s. When the parameters are known, the linear
discriminant function is

1
L= (0 = P YETX = S — ),

We assume that the costs of misclassification are equal and the prior probabilities are
equal. Then the observation is classified into 71 if L > 0 and into my if L<0. When the
parameters are unknown, they need to be estimated. Suppose independent random samples
of size n; from m; are available. We consider two cases.

T This study was conducted by research funds from Gwangju University in 2010.
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The first case is that the components of the mean vector are equal and the second case is
that the components are not equal. In these cases, Han and Chung (2001) found maximum
likelihood estimates (MLE), and discussed the error rates and their estimations. Section 2
studies two procedures by principal component analysis for the above classification problem.
Section 3 considers the comparison between the regular classification method and the two
procedures, i.e., test procedure and proportion procedure, by principal component analysis.
Section 4 considers the selection of significance level for test procedure.

2. Classification by principal component analysis

Principal component analysis has been suggested in the literature as a tool for the reduc-
tion of dimensionality. Among various optimal properties they possess, an important one is
that the variables so constructed are ordered in their contribution to the total variability.
However, as has been pointed out by Rao (1964) and Dempster (1969), this ordering often
has little or no bearing in the ability of the new variables to ’discriminate’ between two or
more populations. In fact, criteria other than the magnitude of the variance have to be used
to select appropriate principal components for the purpose of classification or discrimination
among two (or more) populations. Such criteria are examined in this paper.

An observation X is to be classified into one of two populations, 7y : N(,LL(I), ¥) and 7y :
N (1, %), where the covariance matrix has the intraclass correlation pattern. Let Y=HX
where H is the Helmert matrix. Then the components of Y are the principal components.
We have 11 : N (uél),D) and my : N (ug(f), D), where D is the diagonal covariance matrix
of Y with

var(Y1) = o*[L + (p—1)p], and war(V;) = o*(1 —p),i=2,....,p.

Suppose random samples of sizes n; and ny are taken from each of two populations. We
have the MLE which are

AP =v® = 7" LYWy k=12
6_\2 — M
p
__ A-cC
P A p-nC

)

where

_—2 3 (k) 7 (k)2
C_(”lJF”Z)(P_l)ZZ, (v =y

Now we consider two procedures for selecting the principal components.
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2.1. Test procedure

We use the t test for testing the equality of the component means of the two populations.
Let ,u?(/’;) be the jth component mean of the kth population. To test Hy; : ,qull) = ug(jzl), the
test statistic is

VAR 171(2)
t1 =
1 1
I~
(m + n2) 1
where

2o LSSy _p o)
! n1+n2—2k = L !

The null hypothesis H,; is not rejected if |t1| < to/2(n1 + na — 2).
To test H,; : ,u?(;») = ,u?(;), j=2,...,p, the test statistic is

tj =
(=1 +—2)83
where
o 1 Ny )y
2 (n1+n2*2)(P*1);;j=1( K Y

The null hypothesis H,; is not rejected if |t;| < to/2((n1 + na — 2)(p — 1)), j=2,...,p.
We discard all principal components that are not significant. Only the significant principal
components are used in the discriminant function.

2.2. Proportion procedure
Let
(}71(1) - }71(2))2

D=~~~ and D*=
1 S% 7

- (1 > (2
3
Now arrange these in descending order and obtain D > D3 > .. > DIQJ. Now we
define
D%+ D3+ ...+ D3
D} + D3 +..+ D2

prop =

The investigator determines a proportion of the total Djz» he is willing to accept. Then he
will select the first k principal components to satisfy the selected proportion. For example,
if the selected proportion is 0.7, we continue to select DJZ until prop reaches 0.7, or greater
than 0.7. Then the corresponding principal components of the selected DJZ are used in the
discriminant function.
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3. Comparison of error rates

When the components of the mean vector are unequal, we first make an orthogonal trans-
formation to diagonalize ¥. Let Y=HX, where H is the Helmert matrix. Then we have
m o N(MZ(,I)7 D), and 7y : N(/},Z(f), D), where D is the diagonal covariance matrix. Substi-
tuting the MLE described in Section 2 into the discriminant function, we obtain

_ _ ~ 1 _ _
V=M _y®yYD 1]y — 5(Y<1> +Y @),

The observation Y is classified to w1 if V > 0 and to ms if V<0. Another classification
statistic is the Anderson’s classification statistic

_ _ 1 _ _
W=(XWD_X®ys-1x — §(X<1> + X,

where X1, X2 and S are the usual sample means and covariance matrix respectively.
The observation X is classified to m; if W > 0 and to m if W < 0.

We consider the procedures by principal component analysis. Let Y=HX, where H is the
Helmert matrix. Then we have 7y : N(,uzgl), D) and 7y : N(,uz(f), D), where D is the diagonal
covariance matrix of Y with var(Y1) = o[1 + (p — 1)p], and var(¥;) = o%(1 — p), i=2,...,p.
When the components of the mean vector are unequal, the MLE ﬁ,(j), D of Mz(j) and D
are described in Section 2. In the first case, i.e., when the components of the mean vector
are equal, after we make the Helmert transformation, the population means of the second
principal component to pth principal component are all zero for the two populations. Hence
these principal components have no discriminant power. All discriminant power is with
the first principal component. So we don’t need to consider the procedures for selecting the
principal components in this case. In the second case, we can select the principal components
by the two procedures in Section 2.1 and 2.2. These selected principal components are used
to construct the sample discriminant function. We obtain the sample discriminant function,

~ =(1) =(2) = ~ 1 =) =(2)
V=V -V YDV -V 4V )

The observation Y is classified to mp if 1% > 0 and to my if V <o.

To study the behavior of these sample discriminant functions, we compare the error rates.
The error rate is 1/2[p(1|2) + p(2|1)], where p(i|j) be the probability of misclassifying from
m; to m;.

We compare the simulated error rates for (i) discriminant function L, which has the op-
timum error rate (OER), (ii) discriminant function V, which has the intraclass-correlation
pattern error rate (IER), (iii) discriminant function W, which has Anderson-statistic error
rate (AER), and (iv) discriminant function V, which has the principal component error rate
(PER). In the Monte Carlo study, we execute various values of u, p, p, a, prop, and sample
sizes. 500 runs are made for estimating the error rates. AP represents the average number
of selected principal components which are used for discriminant function for each run. The
number in the parenthesis represents the standard deviation. In Table 3.1 and Table 3.2,
PER is smaller than IER in some cases. In genral, PER is about the same as IER or smaller
than IER for small APs.
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The error rate depends on the unknown parameters. Hence we need to estimate the error
rate. We consider two methods for estimating error rate, i.e., the leave-one-out method and
the bootstrap method. The estimators are denoted by LIER and BIER for estimating IER,
by LAER and BAER for estimating AER, and by LPER and BPER for estimating PER.
Tables give the estimators which are obtained by using 500 runs, and 300 bootstrap samples
are generated for each run. From the tables, we can see that the leave-one-out method is
almost the same as the bootstrap method.

Table 3.1 Error rate with intraclass correlation pattern (Unequal mean component)
71 N, ), u = (0.0, 0.5, 1.0)

p=3 7o : N(u®), ), u?@ = (1.5, 2.1, 2.7)

nl,n2 p OER Intraclass Anderson Principal «a =.01 a=.1 Prop =.7
TER.017(.004) AER.023(.009) PER .016(.003) .017(.003) .016(.003)
3 014 LIER.017(.029) LAER.023(.033) LPER  .017(.028) .017(.028) .017(.028)
’ ’ BIER.016(.028) BAER 018(.025) BPER  .016(.028) .016(.028) .016(.028)

AP 1.0 1.2 1.0
nl=9 IER 094(.012) AER.106(.020) PER .089(.009) .091(.011) .088(.008)
0 083 LIER.094(.067) LAER.106(.070) LPER  .086(.063) .084(.062) .086(.063)
’ BIER..090(.064) BAER.095(.068) BPER  .085(.062) .083(.062) .085(.061)

n2=12 AP 1.0 1.2 1.0
IER.217(.022) AER.227(.028) PER .217(.027) .217(.026) .216(.022)
9 196 LIER.220(.103) LAER.226(.101) LPER  .205(.098) .196(.090) .197(.089)
’ ’ BIER.210(.096) BAER.217(.100) BPER  .205(.099) .195(.092) .196(.089)

AP 0.9 1.4 1.2
IER.015(.001) AER.016(.002) PER .014(.001) .015(.001) .015(.001)
.3 014 LIER.014(.014) LAER.015(.015) LPER  .014(.014) .014(.014) .014(.014)
nl=35 ’ BIER.014(.014) BAER.015(.014) BPER  .014(.014) .014(.014) .014(.014)

AP 1.0 1.3 1.0
0 .083  IER.086(.003) AER.089(.006) PER .085(.003) .085(.003) .084(.002)
LIER.085(.033) LAER.087(.033) LPER  .082(.032) .082(.032) .082(.032)
BIER.084(.033) BAER.086(.034) BPER  .082(.032) .082(.032) .082(.032)

n2=35 AP 1.0 1.3 1.0
IER.203(.007) AER.206(.009) PER .206(.005) .205(.006) .206(.004)
9 196 LIER 202(.048) LAER.206(.048) LPER  .200(.048) .198(.047) .203(.048)
’ ’ BIER 202(.048) BAER.204(0.47) BPER  .200(.048) .198(.046) .203(.048)

AP 1.2 1.7 1.0
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Table 3.2 Error rate with intraclass correlation pattern (Unequal mean component)

N, o), pM = (0.1, 0.3, 0.5, 0.7, 0.9. 1.1)

o
p=26 ot N(p®)) %), @ = (1.8, 2.0, 2.2, 2.4, 2.6, 2.8)
nl,n2 p OER Intraclass Anderson Principal a =.01 a=.1 Prop =.7
TIER.0020(.0004)  AER.0042(.0023) PER .0018(.0003) .0019(.0003) .0018(.0003)
“1 0016 LIER.0021(.0076) LAER.0041(.0108) LPER  .0018(.0071) .0019(.0073) .0018(.0070)
B BIER.0018(.0067) BAER.0036(.0064) BPER  .0018(.0069) .0018(.0068) .0018(.0067)
AP 1.0 1.5 1.0
nl=17 .2 .070 TIER.080(.008) AER.097(.018) PER .074(.005) .076(.007) .073(.004)
LIER.077(.045) LAER.096(.050) LPER .070(.041) .069(.041) .071(.041)
BIER.077(.046) BAER.084(.046) BPER .070(.042) .068(.041) .070(.041)
n2=19 AP 1.0 1.5 1.0
1IER.211(.018) AER.228(.026) PER .192(.011) .199(.016) .194(.014)
9 187 LIER.211(.072) LAER.230(.072) LPER .188(.064) .185(.062) .188(.062)
' ’ BIER.203(.068) BAER.209(.072) BPER .188(.064) .183(.062) .187(.063)
AP 1.0 1.5 1.1
IER.0018(.0002)  AER.0026(.0008) PER .0017(.0002) .0018(.0002) .0017(.0002)
“1 0016 LIER.0017(.0049) LAER.0022(.0059) LPER  .0017(.0049) .0016(.0048) .0017(.0049)
T BIER.0015(.0047) BAER.0021(.0047) BPER .0016(.0048) .0015(.0046) .0016(.0048)
nl=35 AP 1.0 1.5 1.0
IER.075(.003) AER.084(.008) PER .072(.003) .073(.003) .072(.002)
2 070 LIER.074(.034) LAER.082(.035) LPER .071(.032) .070(.031) .071(.032)
’ ’ BIER.073(.033) BAER.078(.033) BPER .071(.031) .070(.031) .070(.032)
n2=35 AP 1.0 1.5 1.0
TIER.200(.008) AER.209(.013) PER .190(.005) .194(.008) .189(.003)
9 187 LIER.197(.050) LAER.206(.052) LPER .185(.046) .182(.046) .186(.046)
' ’ BIER.195(.050) BAER.201(.061) BPER .185(.047) .182(.047) .186(.047)
AP 1.0 1.5 1.0

4. Selection of significance level for test procedure

In Section 2.1, the test procedure is a preliminary test (Bancroft and Han, 1977; Han et
al., 1988). We counsider the levels of the test, « =0.01 and 0.1 for various p, p, p and sample
sizes. In Table 3.1 and Table 3.2, we can see that PER is the smallest at « =0.1 in most
cases. So we may recommend the significance level a =0.1 for test procedure.

5. Conclusion

We consider two procedures, i.e., the test and proportion procedures, for selecting the
principal components in classification when the two populations are multivariate normal
with intraclass correlation model. These procedures are useful for reducing the dimension
and may give smaller error rate. For estimating the error rate, the leave-one-out method
and the bootstrap method are about the same.
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