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Bootstrap Method for Row and Column Effects Model

Hyeong Chul Jeongl
Abstract

In this paper, we consider a bootstrap method to the "row and column effects
model” (RC model) to analyze a contingency table with ordered variables. We propose
a bootstrap procedure for testing of independence, equality of intervals, and goodness
of fit in the RC model. A real data example is included.

Keywords : Bootstrap, RC model, Independence test, Equality of interval test, Goodness of fit
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1. Introduction

In recent years, the analysis of association among ordinal categorical data has received
considerable attention. There are several advantages to be gained from using ordinal models
which use information on ordering instead of the standard procedures appropriate for nominal
categorical data. For ordinal categorical data, a greater variety of models exist which are more
parsimonious and have simpler interpretations than the nominal methods (Davis, 1988). A list
of pertinent references includes Agresti (1984), Goodman (1979, 1986), Gilula and Ritov (1990)
and Jeong, Jhun and Kim (2005).

Consider an r X ¢ contingency table having ordinal variables. Let X be the row category
variable and let ¥ be the column category variable. The log-linear models treat all
classifications as nominal, in the sense that parameter estimates are invariant to orderings of
categories. These models ignore important information that reflects the orderings, such as "the
X variable increases as the Y variable increases or decreases”. Goodman (1979, 1981a, 1981b)
provided a "row and column effects model” (RC model) to analyze a contingency table with
ordered variables. The RC model treats the row and column scores as parameters to be
estimated from the data. Agresti (1984, 1990) calls it the log-multiplicative or log-bilinear
model because the log expected frequency is a multiplicative (rather than linear) function of
the model parameters. The RC model has a nonlinear property for parameters because the log
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expected frequency is a multiplicative function of the parameters. Therefore, there are many
difficulties in using the conventional statistical inference in the RC model. And it is very
difficult to identify the distribution of the row and column scores with the RC model.
Therefore, a bootstrap method for the RC model is considered to overcome the above
problems. Jeong et al (2005) showed that the bootstrap method for the two-way ordinal
contingency tables outperforms the other conventional methods for the test of independence, at
least when the sample size is small and the dimension of the contingency table is large. In
this paper, we consider the various statistical inferences related to the RC model using the
bootstrap method. The methods discussed in this paper are also applied to a real data set.

The remainder of this paper is organized as follows. Section 2 presents some preliminaries
about the RC model. In section 3, we propose a bootstrap procedure for testing of
independence, testing of equality of intervals, and testing of goodness of fit in the RC model.
A real data example is presented in section 4. Finally, we give concluding remarks in section
5.

2. Row and Column Effects Model

For an 7 X ¢ contingency table, a general form for the association model is
logmy; = p+ A + A + wy; VAY)

where E )\X E /\Y 0, v represents row scores of X variables, and v; denotes

J
column scores of Y variables. In this association model, the log—odds ratio is
m,
lo 9 j= =1lo MMy 41 — —v; )
g 8 m, ]+1mz+1,_7 ( )( ]+1
Model (2.1) is the "linear-by-linear association model” when w;v;= ,Bu:v; with u; and v; being
fixed, strictly monotone scores (Agresti, 1990).
The RC model is written as:

logm;; = u+ A+ /\~Y + Bu; v; (2.2)

Here the constraints are ) up;, = E vp, ;=0 and E ulp; , = E vip,; =1, where p;,
[ J

and p,; denote the row and column sample marginal distributions, respectively. Under the

constraints, the estimated association parameter B can be interpreted as a correlation

coefficient. Goodman (1981b) discussed the fact that the RC model for discrete variables has a
form which is similar to the bivariate normal density for continuous variables. If (X, ¥) have
a standardized bivariate normal distribution, then

)= @ryT= ) texp| g
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By the constraints of the RC model, o; =exp(u+AY), v,=exp(A]) and the association

parameter (3 correspond to p/(1—p?) in the bivariate normal density (see details in Goodman
(1981b)).

If one set of the parameter scores are fixed, the RC model simplifies to the "row effects
model” (R model) or "column effects model” (C model), where R model means the column
scores v; are fixed constants, and C model means the row scores v are fixed constants.

Goodman (1979) suggested a simple iterative algorithm to fit the RC model using the method
for the R model and C model. A cycle of the algorithm has two steps, each step consisting of
the iterative fitting of the R or C model. First, the column parameter scores are treated as
fixed values and estimate the row scores as in the R model. By using the estimated row
scores from the first step, the column scores are estimated as in the C model. Second, using
the estimated column scores, row scores are re-estimated. In each step, convergence is
checked. When the criteria of convergence are satisfied, then the iterations are finished. Davis
(1988) modified Goodman’s algorithm. Therefore, Davis’s algorithm is used to apply a
bootstrap method to an 7 X ¢ contingency table (see details in section 3 of Davis (1983)).

3. Bootstrap procedure for RC model

In this section, we propose the three bootstrap procedure to test for RC model. When the
RC model holds, we focus to (1) testing of goodness of fit, (2) testing of 8 =0, (3) testing
whether row and column scores are equally distanced. Denote the "linear-by-linear model” by
LL model and the "independence model” by I model.

Assuming the RC model holds, the test statistics of goodness of fit have the form
G*(RC) = E Z ny; (lognij—log'rﬁij)' The test has (r—2)(c—2) degrees of freedom. Next,
we assess the statistical significance of H;: 3=0 by testing the departure from independence.

One test statistic is the reduction in G? statistic: .
G*(IRC) = G*(I) - G*(RC).

Haberman (1981) showed that G2(JJRC) is not chi-squared, but instead the statistic has the
same asymptotic distribution as that of the maximum eigenvalue of the (r—1)(r—1) central
Wishart matrix with (¢ —1) degrees of freedom. Finally, testing whether the row and column
scores are equally distanced, which is equivalent to testing for the departure from the
"linear-by-linear model”, we therefore use the statistic G?(LIRC) = G*(LL)— G*(RC),
based on r+ ¢— 4 degrees of freedom. Now, we propose a bootstrap test procedure to test for
each case in the RC model. '

A. Bootstrap procedure for goodness of fit test for RC model
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[Step 1] Fit the RC model to the observed data {n;:1si<r1<j=<c} and compute
the expected cell frequencies m ={m;:1<i<rl1=<j<c} by the Davis algorithm
and expected cell probabilities p ={p;;:1<i<r,1<j=<c}, where py=my/y. Then
compute the likelihood ratio goodness of fit statistic G2 (RC).

[Step 2] Generate a bootstrap sample {n;:1=<i<rl<j<c} from multinomial
distribution with cell probabilities p ={p;;:1<i<r1<j=<c} based on the RC
model.

[Step 3] Fit the RC model to the bootstrap sample {n; 1<i<rl=<j<c} and
compute the likelihood ratio goodness of fit statistic G* (RC).

[Step 4] If B bootstrap replicates have been obtained, go to Step 5. Otherwise, repeat
Step 2 and Step 3.
[Step 5] Compute the estimate of the p-value such as
g =# [G¥(RC) =2 G*(RC))/B.

B. Bootstrap procedure for testing H, : =0 for RC model

[Step 1] Fit the RC model and the I model to the observed data {n;:1<i<rl=<j=<c}.
Compute the expected cell frequencies m = {n?l,ij :1<i<rl1<j<c} and the
expected cell probabilities p ={p,;:1<i<r1<j=<c} for the RC model. Again
‘compute the expected cell probabilities g ={g;;:1<i=<r,1<j=<c} for the I model
where g;; = n,-_n,j/nz. Using these two models, compute the testing statistic
G*(1RC) = G*(I) - G*(ROC).

[Step 2] Generate a parametric bootstrap sample {n:j :1£igrl<j<c} from
multinomial distribution with cell probabilities g = { gyrl=isrlsj= c} based on
the I model, instead of p ={p;;:1<i=<r,1<j=<c} based on the RC model.

[Step 3] Fit the RC model and the I model to the bootstrap sample {n;-: 1sisrnli<sj=<c}.
Then compute the testing statistic G** (JRC) = G¥ (I) — G¥ (RC).

[Step 4] If B bootstrap replicates have been obtained, go to Step 5. Otherwise, repeat Step

2 and Step 3.
[Step 5] Compute the estimate of the p-value such as

g =# [G¥ (1) — G¥ (RC) 2 G*(I) - G*(RC))/B.

C. Bootstrap procedure for testing equality of intervals for RC model

[Step 1] Fit the RC model and the LL model to the observed data {n;:1<i<nl=<j<c}.
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Compute the expected cell frequencies m ={m,;:1<i<r1<j=<c} and the expected
cell probabilities p = {;Bij :1<i<r1<j=<c} for the RC model. Then compute the
expected cell probabilities p, = {p 5 :1<i=<r1=<j=<c} for the LL model. Using these
two models, compute the testing statistic G*(LLRC) = G*(LL) — G*(RC).

[Step 2] Generate a parametric bootstrap sample {n;:1<i=<r1<j=<c} from
multinomial distribution with cell probabilities p, = {p5:1<i<r1<j<c} based on
the LL model.

[Step 3] Fit the RC model and the LL model to the bootstrap sample
{n;:1<i<r1<j<c} respectively. Then compute the testing statistic G *(LL|IRC)
= G¥ (LL) - G* (RC).

[Step 4] If B bootstrap replicates have been obtainéd, go to Step 5. Otherwise, repeat Step

2 and Step 3.
[Step 5] Compute the estimate of the p-value such as

apy=# [G¥(LL) - G¥(RC) =z G*(LL)— G*(RC))/B.

There are some differences in generating the bootstrap sample in each case. When one
execute the goodness of fit test for the RC model, testing the H,:3=0, and testing the
equality of intervals, then the bootstrap sample must be generated from multinomial
distribution with the cell probabilities based on the RC model, I model, and LL model
respectively.

4. Numerical Example

We consider a contingency table from Srole, Langner, Michael, Opler, and Rennie (1962) that
describes the relationship between an individual’s mental health status (MHS;r =4) and the
socioeconomic status of his or her parents (SES;c =6). The data are displayed in Table 1.
This example was also examined by Gilula (1986) and Goodman (1979, 1986). Here, the data
are analysed using the bootstrap methods proposed in this paper.

The null hypothesis of independence between SES and MHS is not accepted, with the
likelihood ratio chi-square G?(J) =47.42 based on df=15. But the RC model fits the
observed data very well, with G?(RC) =3.57 based on df=8. The ML estimates of column
scores are (-1.1124, -1.1215, -0.3711, 0.0271, 1.0104, 1.8181), the ML estimates of row scores
are (-1.6773, -0.1405, 0.1367, 1.4139) and 3 = 0.1665. The corresponding correlation parameter
is p =0.1622. The row scores indicate that the distance between the MHS categories labeled
"mild” and "moderate” is much less than the distances between other adjacent categories.
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Also, SES categories A and B have almost the same score, and the distance between
categories C and D is much less than the distances between B and C, D and E, and E and F.

[Table 1] Subjects Cross—Classified by Mental Health Status and Parental Socioeconomic Status

Mental Health Parental Socioeconomic Status (SES)

Status 000 e

(MHS) A(high) B C D E F(low)  Total
Well 64 57 57 72 36 21 307
Mild Symptoms 94 94 105 141 97 71 602
Mod, Symptoms 58 54 65 77 54 54 362
Impaired 46 40 60 94 78 71 389
Total 262 245 287 384 265 217 1660

Now the bootstrap statistical inferences are considered for the scores of row and column
categories, goodness of fit test for RC model, the estimated value of association parameter (3
and the test of equality of intervals of row and column scores.

First, the estimate of the bootstrap p-value of the goodness of fit is

P[G* (RC) = G*(RC)] = 0.894.
In comparison, the corresponding chi-squared p-value with df=28 is 0.8937. Thus, the two
methods produce quite similar results (based on bootstrap replication B=1000).

Second, the estimate of the bootstrap p-value of the hypothesis H,: 3=0 is

P[GT (D) - G*(RC) = G*(I) — G*(RC)] = 0.000.
In comparison, G*(I)— G?*(RC) = 43.86. The corresponding upper 5 and 1 percent points of
the distribution of the maximum eigenvalue of the 3x3 central Wishart matrix with df=5 are
1721 and 21.65. Therefore, the p-value is preconceived as smaller than 0.01. Thus, the two
methods produce quite similar results (based on bootstrap replication B=1000).

Third, the estimate of the bootstrap p-value of the hypothesis H,' row and column scores
are equally distanced, is

P[G¥(LL)— G*(RC) = G*(LL) — G*(RC)] = 0.391.
In comparison, when we use the statistic G?(LL)— G?(RC) = 6.32 based on df=6, the p
-value is 0.3883. This means that the parameter scores do not give a significantly better fit
than equal-interval scores. However, in comparison with the bootstrap method, the two
methods produce quite similar results (based on bootstrap replication B=1000).

[Table 1] was analyzed as it has been shown to have a stochastically ordering property by
Evans et al. (1997). They analyzed the data with a Bayesian method. Hence, the bootstrap
method produced the unexpected additional results which are the bootstrap distributions of the
row scores, column scores, § and p values. The distributions can be expressed by the flexible
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and straightforwardly implemented feature of the bootstrap approach.

[Figure 1] displays the estimated kernel densities of row and column scores. [Figure 1(a)]
goes from MHS categories labeled "Well” to MHS categories labeled “Impaired”. [Figure 1(b)]
goes from SES categories labeled "A” to SES categories labeled "F”. The graphical outputs
show the stochastically ordering property.
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(a) Row scores (b) Column scores
[Figure 1] Estimated kernel densities for row and column scores.

From [Figure 1(a)], we see that the densities of "Mild (rowscore 2)” and "Moderate
(rowscore 3)” overlay in a wide range. This means there is only a slight difference between
the row scores of "Mild” and "Moderate”. In addition, from [Figure 1(b)], the densities of "A”
and "B” show a similar pattern. Both [Figure 1(a)] and [Figure 1(b)] show that the
distributions of scores are stochastically higher as row categories move from "Well” to
"Impaired” and column categories move from "A” to "B”. These graphic results can be applied
to collapse the categories. Therefore, the "Mild”" category can be combined with the
"Moderate” category for the MHS variable. For the SES variable, categories "A” and "B” also
can be combined. [Figure 2] displays the estimated kernel densities of B and p values. This
two estimated densities show a similar pattern, and the values are distributed from the ML
estimate 0.1665 and 0.1622 respectively.
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[Figure 2] Estimated kernel densities for § and p values.

5. Conclusion

Many difficulties lies in making statistical inferences because the RC model has a nonlinear
property for parameters. In this study, we have proposed various bootstrap methods for
ordered categorical data, especially for the RC model. The bootstrap methods is statistically
more appealing because the complicated structures among the row and column categories are
taken into account. We conclude that the proposed bootstrap methods provide a useful
nonparametric alternative to the traditional asymptotical theory. Our approach can be
generalized to the traditional log-linear model. Of course, we may extend these graphical
results to the stochastic ordering among a set of categorical variables.
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