• Title/Summary/Keyword: Bootstrap Methods

Search Result 257, Processing Time 0.017 seconds

Bootstrap Confidence Intervals for a One Parameter Model using Multinomial Sampling

  • Jeong, Hyeong-Chul;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.465-472
    • /
    • 1999
  • We considered a bootstrap method for constructing confidenc intervals for a one parameter model using multinomial sampling. The convergence rates or the proposed bootstrap method are calculated for model-based maximum likelihood estimators(MLE) using multinomial sampling. Monte Carlo simulation was used to compare the performance of bootstrap methods with normal approximations in terms of the average coverage probability criterion.

  • PDF

Stationary bootstrapping for structural break tests for a heterogeneous autoregressive model

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.4
    • /
    • pp.367-382
    • /
    • 2017
  • We consider an infinite-order long-memory heterogeneous autoregressive (HAR) model, which is motivated by a long-memory property of realized volatilities (RVs), as an extension of the finite order HAR-RV model. We develop bootstrap tests for structural mean or variance changes in the infinite-order HAR model via stationary bootstrapping. A functional central limit theorem is proved for stationary bootstrap sample, which enables us to develop stationary bootstrap cumulative sum (CUSUM) tests: a bootstrap test for mean break and a bootstrap test for variance break. Consistencies of the bootstrap null distributions of the CUSUM tests are proved. Consistencies of the bootstrap CUSUM tests are also proved under alternative hypotheses of mean or variance changes. A Monte-Carlo simulation shows that stationary bootstrapping improves the sizes of existing tests.

Better Bootstrap Confidence Intervals for Process Incapability Index $C_{pp}$

  • Cho, Joong-Jae;Han, Jeong-Hye;Lee, In-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.341-357
    • /
    • 1999
  • Greenwich and Jahr-Schaffrath(1995) considered a new process incapability index(PII) $C_{pp}$, which modified the useful index $C^{\ast}_{pm}{$ for detecting assignable causes. The new index $C_{pp}$ provides an uncontaminated separation between information concerning the process accuracy and precision while this kind of information separation is not available with the $C^{\ast}_{pm}$ index. In this paper, we will study about the index $C_{pp}$ based on the bootstrap. First, we will prove the consistency of bootstrap deriving the bootstrap asymptotic distribution for our index $C_{pp}$. Moreover, with the consistency of bootstrap, we will construct six bootstrap confidence intervals and compare their performances. Some simulation results, comparison and analysis are provided. In particular, two STUD and ABC bootstrap methods perform significantly better.

  • PDF

Streamflow Generation by Boostrap Method and Skewness (Bootstrap 방법에 의한 하천유출량 모의와 왜곡도)

  • Kim, Byung-Sik;Kim, Hung-Soo;Seoh, Byung-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.275-284
    • /
    • 2002
  • In this study, a method of random resampling of residuals from stochastic models such as the Monte-Carlo model, the lag-one autoregressive model(AR(1)) and the periodic lag-one autoregressive model(PAR(1)), has been adopted to generate a large number of long traces of annual and monthly steamflows. Main advantage of this resampling scheme called the Bootstrap method is that it does not rely on the assumption of population distribution. The Bootstrap is a method for estimating the statistical distribution by resampling the data. When the data are a random sample from a distribution, the Bootstrap method can be implemented (among other ways) by sampling the data randomly with replacement. This procedure has been applied to the Yongdam site to check the performance of Bootstrap method for the streamflow generation. and then the statistics between the historical and generated streamflows have been computed and compared. It has been shown that both the conventional and Bootstrap methods for the generation reproduce fairly well the mean, standard deviation, and serial correlation, but the Bootstrap technique reproduces the skewness better than the conventional ones. Thus, it has been noted that the Bootstrap method might be more appropriate for the preservation of skewness.

A Comparison of Some Approximate Confidence Intervals for he Poisson Parameter

  • Kim, Daehak;Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.899-911
    • /
    • 2000
  • In this paper, we reviewed thirteen methods for finding confidence intervals for he mean of poisson distribution. Bootstrap confidence intervals are also introduced. Two bootstrap confidence intervals are compared with the other existing eleven confidence intervals by using Monte Carlo simulation with respect to the average coverage probability of Woodroofe and Jhun (1989).

  • PDF

Bootstrap Confidence Intervals for the INAR(p) Process

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.343-358
    • /
    • 2006
  • The distributional properties of forecasts in an integer-valued time series model have not been discovered yet mainly because of the complexity arising from the binomial thinning operator. We propose two bootstrap methods to obtain nonparametric prediction intervals for an integer-valued autoregressive model : one accommodates the variation of estimating parameters and the other does not. Contrary to the results of the continuous ARMA model, we show that the latter is better than the former in forecasting the future values of the integer-valued autoregressive model.

Bootstrap control limits of process control charts for correlative process data

  • Suzuki Hideo
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.174-179
    • /
    • 1998
  • This research explores the application of the bootstrap methods to the construction of control limits for the x charts and the EWMA charts based on single observations with stationary autoregressive processes. The subsample means-based control chars in the presence autocorrelation are also considered. We use a technique for inferring confidence intervals using bootstrap, the percentile method. Simulation studies are conducted to compare the performance of the bootstrap method and that of standard method for constructing control charts under several conditions.

  • PDF

A Note on Comparing Multistage Procedures for Fixed-Width Confidence Interval

  • Choi, Ki-Heon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.643-653
    • /
    • 2008
  • Application of the bootstrap to problems in multistage inference procedures are discussed in normal and other related models. After a general introduction to these procedures, here we explore in multistage fixed precision inference in models. We present numerical comparisons of these procedures based on bootstrap critical points for small and moderate sample sizes obtained via extensive sets of simulated experiments. It is expected that the procedure based on bootstrap leads to better results.

A Nonparametric Bootstrap Test and Estimation for Change

  • Kim, Jae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.443-457
    • /
    • 2007
  • This paper deals with the problem of testing the existence of change in mean and estimating the change-point using nonparametric bootstrap technique. A test statistic using Gombay and Horvath (1990)'s functional form is applied to derive a test statistic and nonparametric change-point estimator with bootstrapping idea. Achieved significance level of the test is calculated for the proposed test to show the evidence against the null hypothesis. MSE and percentiles of the bootstrap change-point estimators are given to show the distribution of the proposed estimator in simulation.