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Abstract
Almost sure central limit theorems are established for a stationary bootstrap sample mean of strong mixing

processes. Both weak and strong consistencies are obtained.

Keywords: Stationary bootstrap, almost sure central limit theorem.

1. Introduction

The almost sure central limit theorem(ASCLT) was first discovered independently by Brosamler
(1988) and Schatte (1988) and has been further studied for independent or dependent random vari-
ables by several authors. Lacey and Philipp (1990), Berkes and Dehling (1994), and Berkes (1995)
developed the ASCLT for independent and identically distributed random variables; however, Berkes
and Dehling (1993) and Berkes and Csaki (2001) developed the ASCLT for independent but not
identically distributed random variables. ASCLT were established by Peligrad and Sho (1995) for
associated sequences, strong mixing and ρ-mixing sequences and by Matula (1998) for associated
random variables. Lesigne (1999) studied the ASCLT for stationary sequences on an aperiodic mea-
sure preserving system, Dudzinski (2003) dealt with the ASCLT under a general weak dependence
condition proposed by Doukhan and Louhichi (1999), and Chen and Lin (2008) obtained the AS-
CLT for functionals of absolutely regular processes. See Lahiri (2003) for CLT results of stationary
bootstrapping for statistics other than the sample mean and the partial sum process.

This work establishes ASCLT for the stationary bootstrapping sample mean of stationary strong
mixing sequences. Both weak and strong consistencies are established. Stationary bootstrapping,
proposed by Politis and Romano (1994), is one of the most widely used block bootstrapping methods
for dependent processes. We find several CLT results among the many results on stationary boot-
strapping. Standard CLT versions of the stationary bootstrapping can be found in Politis and Romano
(1994) and Hwang and Shin (2012), where the asymptotic validity of the stationary bootstrapping
was shown in view of the weak and strong consistency, respectively. Functional CLTs for stationary
bootstrapping are established under strong mixing by Paparoditis and Politis (2003) and Parker et al.
(2006) in terms of unit root tests.

2. Stationary Bootstrapping

We describe the stationary bootstrap method for a sample mean. Let {X1, . . . , Xn} be the observed
data set. First a new time series {Xni : i ≥ 1} is obtained by wrapping the data X1, . . . , Xn around
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a circle, and relabelling them as Xn1, Xn2, . . . such that for each i ≥ 1, Xni := X j where i = j
(mod n). A stationary bootstrap sample {X∗n,1, . . . , X∗n,n} is then constructed by combining blocks
B(i, ℓ) = {Xni, . . . , Xn(i+ℓ−1)} consisting of ℓ observations with geometrically distributed block length ℓ
and uniformly distributed starting point i as described below.

Random variables In,1, In,2, . . . and Ln,1, Ln,2, . . . are generated such that conditionally on the ob-
servations X1, . . . , Xn, {In,1, In,2, . . .} are i.i.d. discrete uniform on {1, . . . , n}, P∗n(In,1 = i) = 1/n,
i = 1, . . . , n; {Ln,1, Ln,2, . . .} are i.i.d. random variables having the geometric distribution with a pa-
rameter p ≡ pn depending on n, P∗n(Ln,1 = ℓ) = p(1 − p)ℓ−1, ℓ = 1, 2, . . . ; and the collections
{In,1, In,2, . . .} and {Ln,1, Ln,2, . . .} are independent. Here and in the following, P∗n and E∗n denote the
conditional probability and the conditional expectation, respectively, given X1, . . . , Xn.

Now, a pseudo-time series X∗n,1, . . . , X
∗
n,n is generated by arranging elements in a series from blocks

B(In,1, Ln,1), . . . , B(In,τ, Ln,τ) and deleting the last Ln,1+ · · ·+Ln,τ−n elements, where τ ≡ τn = inf{ k ≥
1 : Ln,1 + · · · + Ln,k ≥ n}.

We assume that p = pn goes to 0 as n → ∞, and thus the expected block length E∗n(Ln,1) = 1/p
tends to∞ as n→ ∞. Conditionally on X1, . . . , Xn, the process X∗n,1, . . . , X

∗
n,n is stationary.

Let X̄n =
∑n

i=1 Xi/n and X̄∗n =
∑n

i=1 X∗n,i/n. Obviously, E∗n(X∗n,1) = X̄n.

3. Main Results

Let {Xt : t = 1, 2, . . . } be a stationary sequence of strong mixing random variables defined on a
probability space (Ω,F, P) with strong mixing coefficient αX(k), k = 1, 2, . . . . We present the main
results of ASCLTs for a triangular array of the stationary bootstrapping observations {X∗k,i : k =
1, 2, . . . , n; i = 1, 2, . . . , k; n→ ∞}.

Before giving the ASCLTs, we review the CLTs for stationary bootstrapping sample mean. As-
sume either

(i) E|X1|6+δ < ∞ for some δ > 0 ; αX(k) = O(k−r), for some r > 3(6+ δ)/δ; p = pn → 0, npn → ∞.

(ii) E|X1|q+δ < ∞ for some q > 2, δ > 0; αX(k) = O(k−r) for some r > q(q + δ)/(2δ); p =
c · n−(δ−2ϵ)/(2+δ) for some c > 0, and 0 < ϵ < δ/2.

Under (i), Politis and Romano (1994) showed the weak consistency result that, conditionally on
X1, . . . , Xn,

√
n
[
X̄∗n − X̄n

] d−→ N
(
0, σ2

)
in (conditional) probability (3.1)

as n → ∞, where σ2 = Var(X1) + 2
∑∞

i=1 Cov(X1, X1+i). Under some more restrictive condition (ii),
Hwang and Shin (2012) obtained a strong consistency result that, conditionally on X1, . . . , Xn,

√
n
[
X̄∗n − X̄n

] d−→ N
(
0, σ2

)
a.s. (3.2)

The following theorem establishes two ASCLTs: the weak consistency under the condition (i) and
the strong consistence under the stronger condition (ii).

Theorem 1. Let X1, X2, . . . be a strictly stationary process of strong mixing random variables. Then,
conditionally on X1, . . . , Xn, as n→ ∞,

1
log n

n∑
k=1

1
k

I


√

k
[
X̄∗k − X̄k

]
σ

≤ x

 a.s.−→ Φ(x) (3.3)



Almost Sure Central Limit Theorems for Stationary Bootstrap Mean 195

in (conditional) probability under (i) or almost surely under (ii), where Φ(x) is the standard normal
distribution function and I(·) is the indicator function.

Remark 1. For processes with E|X1|q+δ < ∞ for some q > 6, condition (ii) is uniformly more
restrictive than condition (i) because 3(6+δ)/δ < q(q+δ)/(2δ), n−(δ−2ϵ)/(2+δ) → 0, and nn−(δ−2ϵ)/(2+δ) →
∞. Under this stronger condition (ii), we have a stronger result (3.3) than the result (3.3) in probability
under the weaker condition (i).

4. Proofs

Proof of Theorem 1 under condition (i): Let S ∗k =
√

k[X̄∗k − X̄k]/σ. Let f be a bounded function
with bounded continuous derivatives. According to Theorem 7.1 in Billingsley (1968) and in the same
way as in Lacey and Philipp (1990), (3.3) in probability is equivalent to, conditionally on X1, . . . , Xn,

1
log n

n∑
k=1

1
k

f
(
S ∗k

) a.s.−→ E f (Z) in probability, (4.1)

where Z denotes a standard normal random variable. Now it remains to show (4.1).
Set f1 = max( f , 0). Obviously f1 is a nonnegative bounded Lipschitz function. The CLT result in

(3.1) implies that

E∗k f1
(
S ∗k

) p
−→ E f1(Z) as k → ∞,

and hence

1
log n

n∑
k=1

1
k

E∗k f1
(
S ∗k

) p
−→ E f1(Z) as n→ ∞. (4.2)

Consider a sequence {n j : j = 1, 2, . . . } with n j = ⌈exp( j1+ν)⌉ the smallest integer greater than
exp( j1+ν) for some ν > 0. Note that lim j→∞ log n j/ log n j+1 = 1. By this fact and by the nonnegativity
of f1, we have

lim sup
n→∞

1
log n

n∑
k=1

1
k

f1
(
S ∗k

)
= lim sup

j→∞

1
log n j

n j∑
k=1

1
k

f1
(
S ∗k

)
a.s. (4.3)

and

lim inf
n→∞

1
log n

n∑
k=1

1
k

f1
(
S ∗k

)
= lim inf

j→∞

1
log n j

n j∑
k=1

1
k

f1
(
S ∗k

)
a.s. (4.4)

We note that for k , l,{
X∗k,i : i = 1, . . . , k

}
and

{
X∗l, j : j = 1, . . . , l

}
are (conditionally) independent (4.5)

since (Ik,i, Lk,i) and (Il, j, Ll, j) are independent. For any ϵ > 0, by Chebyshev’s inequality,

P∗n j

 1
log n j

n j∑
k=1

1
k

[
f1

(
S ∗k

)
− E∗k f1

(
S ∗k

)]
> ϵ

 ≤ 1
ϵ2(log n j)2 Var∗n j

 n j∑
k=1

1
k

[
f1

(
S ∗k

)
− E∗k f1

(
S ∗k

)]
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which is bounded above a.s. by

C
ϵ2(log n j)2

n j∑
k=1

1
k2 ≤

C
ϵ2(log n j)2

n j∑
k=1

1
k
≤ C
ϵ2 log n j

because of boundedness of f1 and (4.5). Hence we have

∞∑
j=1

P∗n j

 1
log n j

n j∑
k=1

1
k

[
f1

(
S ∗k

)
− E∗k f1

(
S ∗k

)]
> ϵ

 ≤ C
ϵ2

∞∑
j=1

1
j1+ν

< ∞ a.s.

thus, by the Borel-Cantelli Lemma, conditionally on X1, . . . , Xn j ,

1
log n j

n j∑
k=1

1
k

[
f1

(
S ∗k

)
− E∗k f1

(
S ∗k

)] a.s.−→ 0 a.s. (4.6)

By (4.2)–(4.6) we obtain that, conditionally on X1, . . . , Xn,

1
log n

n∑
k=1

1
k

f1
(
S ∗k

) a.s.−→ E f1(Z) in probability. (4.7)

In the same way, letting f2 = min( f , 0), we have

1
log n

n∑
k=1

1
k

f2
(
S ∗k

) a.s.−→ E f2(Z) in probability. (4.8)

By (4.7) and (4.8), we have the desired results of (4.1) and thus of (3.3) in conditional probability. �

Proof of Theorem 1 under condition (ii): The CLT result in (3.2) implies that E∗k fi(S ∗k)
a.s.−→ E fi(Z)

as k → ∞, for i = 1, 2, and hence

1
log n

n∑
k=1

1
k

E∗k fi
(
S ∗k

) a.s.−→ E fi(Z) as n→ ∞.

Similarly to the proof of Theorem 1 under condition (i), (3.3) almost surely is equivalent to, condi-
tionally on X1, . . . , Xn,

1
log n

n∑
k=1

1
k

f
(
S ∗k

) a.s.−→ E f (Z) a.s. (4.9)

and the remaining part in proving (4.9) is the same as in that of Theorem 1 under condition (i). �
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