• Title/Summary/Keyword: Boost DC-DC Converter

Search Result 705, Processing Time 0.036 seconds

A Study on the Starter Control of the Turbo Generator (터보 제너레이터의 시동기 제어에 관한 연구)

  • 박승엽;노민식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.286-293
    • /
    • 2004
  • This paper presents the result of a study on the starter control for a turbo generator. Because a starter in gear box type turbo-generator system is composed of gearbox and brush DC motor, it should be replaced with High Speed Generator(HSG)) in HSG type Turbo-generator. There-ore, it is necessary to design a new starting algorithm and starter. In gearbox type system, brush DC motor is rotated to the designed speed using low voltage-high current battery power. After brush DC motor speed is increased to several times by gearbox, gas turbine engine can be rotated to designed starting speed. If we implement a starter with High Speed Generator(HSG), it is necessary to drive high-speed generator to high-speed motor. High-speed generator with permanent magnet on rotor has a low leakage inductance fur driving high-speed rotation, and it is necessary high DC link voltage for inverter when High-speed generator is driven to high speed. This paper presents result of development of the boost converter for converting high voltage DC from low battery voltage and design of the inverter for controlling a high frequency current to be injected to motor winding. Also, we show performance of the designed starter by driving the turbo generator.

A study on the haromnic attenuation of the BF Converter (BF 컨버터의 고조파 감쇠에 관한 연구)

  • 최태섭;안인수;임승하;사공석진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.8-15
    • /
    • 2000
  • In this paper, we realize the active PFC(Power Factor Correction) system of BF(Boost Forward) converter with PWM-PFM(Pulse Width Modulation-Pulse Frequency Modulation) control technique to control DC output voltage, to remove the noise like harmonics at output voltage, and to control the input current with sinusoidal wave synchronized by the source voltage.To achieve the desired load voltage and improved PFC, we first implement current shaping control at the inverting stage and make the converted output DC voltage with forward converter. After making the ratio of output voltage to current as 50V/1A and the duty ratio greater than 0.5. When input voltage is 30V and boost inductance is 1.1mH. we control the voltage changing rate according to the variation of load resistance using a PWM-PFM control technique. And finally we prove experimentally, we attenuated its harmonics and improved PF up to 0.96 using the current shaping technique.

  • PDF

New Isolated Zero Voltage Switching PWM Boost Converter (새로운 절연된 영전압 스위칭 PWM 부스트 컨버터)

  • Cho, Eun-Jin;Moon, Gun-Woo;Jung, Young-Suk;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.535-538
    • /
    • 1994
  • In this paper, an isolated ZVS-PWM boost converter is proposed for single stage line conversion. For power factor correction, we used the half bridge topology at the primary side of isolation transformer permitting switching devices to operate under ZVS by using circuit parastics and operating at a fixed duty ratio near 50%. Thus the relatively continuous input current distortion and small size input filter are also achievable. The ZVS-PWM boost operation of the proposed converter can be achieved by using the boost inductor $L_f$, main switch $Q_3$, and simple auxiliary circuit at the secondary side of isolation transformer. The secondary side circuit differ from a conventional PWM boost converter by introduction a simple auxiliary circuit. The auxiliary circuit is actived only during a short switching transition time to create the ZVS condition for the main switch as that of the ZVT-PWM boost converter. With a single stage, it is possible to achieve a sinusoidal line current at unity power factor as well as the isolated 48V DC output. Comparing to the two stage schemes, overall effiency of the proposed converter is highly improved due to the effective ZVS of all devices as well as single stage power conversion. Thus, it can be operated at high switching frequency allowing use of small size input filter. Minimum voltage and current stress make it high power application possible.

  • PDF

Slip Power Recovery System by Switch Mode Converter (스위치모드 콘버어터에 의한 슬립전력 회수시스템)

  • Whang, Young-Moon;Choo, Young-Bae;Park, Han-Woong;Kim, Jung-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.221-223
    • /
    • 1997
  • This paper deals with the slip power recovery system using switch mode converter in the inverter DC side, which recovers slip power of induction machine to AC line with the aid of the boost converter. As a results, the motor speed can be controlled by the duty ratio of boost switch, not by inverter firing angle. This results that the reactive power produced by phase controlled inverter and diode rectifier can be greatly reduced and linear speed regulation can be obtained. Moreover, the harmonic components of line current caused by the commutation in inverter and rectifier can be considerably suppressed. Therefore, most of the problems in conventional system can be solved.

  • PDF

Cascaded Boost Multilevel Converter for Distributed Generation Systems

  • Kim, Ki-Mok;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.70-71
    • /
    • 2017
  • This paper presents a new cascaded boost multilevel converter topology for distributed generation (DG) systems. Most of DG systems, such as photovoltaic (PV), wind turbine and fuel cells, normally require the complex structure power converters, which makes the system expensive, complex and hard to control. However, the proposed converter topology can generate a much higher output voltage just by using the standard low-voltage switch devices and low voltage DC-sources in a simplified structure, also enhancing the reliability of the switch devices. Simulation and experimental results with a 1.2kW system are presented to validate the proposed topology and control method.

  • PDF

A New Z-Source Inverter Topology with High Voltage Boost Ability

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.714-723
    • /
    • 2012
  • A new Z-source inverter (ZSI) topology is developed to improve voltage boost ability. The proposed topology is modified from the switched inductor topology by adding some more inductors and diodes into inductor branch to the conventional Z-source network. The modulation methods developed for the conventional ZSI can be easily utilized in the proposed ZSI. The proposed ZSI has an ability to obtain a higher voltage boost ratio compared with the conventional ZSI under the same shoot-through duty ratio. Since a smaller shoot-through duty ratio is required for high voltage boost, the proposed ZSI is able to reduce the voltage stress on Z-source capacitor and inverter-bridge. Theoretical analysis and operating principle of the proposed topology are explicitly described. In addition, the design guideline of the proposed Z-source network as well as the PWM control method to achieve the desired voltage boost factor is also analyzed in detail. The improved performances are validated by both simulation and experiment.

A Three-Phase High Frequency Semi-Controlled Battery Charging Power Converter for Plug-In Hybrid Electric Vehicles

  • Amin, Mahmoud M.;Mohammed, Osama A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.490-498
    • /
    • 2011
  • This paper presents a novel analysis, design, and implementation of a battery charging three-phase high frequency semi-controlled power converter feasible for plug-in hybrid electric vehicles. The main advantages of the proposed topology include high efficiency; due to lower power losses and reduced number of switching elements, high output power density realization, and reduced passive component ratings proportionally to the frequency. Additional advantages also include grid economic utilization by insuring unity power factor operation under different possible conditions and robustness since short-circuit through a leg is not possible. A high but acceptable total harmonic distortion of the generator currents is introduced in the proposed topology which can be viewed as a minor disadvantage when compared to traditional boost rectifiers. A hysteresis control algorithm is proposed to achieve lower current harmonic distortion for the rectifier operation. The rectifier topology concept, the principle of operation, and control scheme are presented. Additionally, a dc-dc converter is also employed in the rectifier-battery connection. Test results on 50-kHz power converter system are presented and discussed to confirm the effectiveness of the proposed topology for PHEV applications.

A Bidirectional Single-Stage DC/AC Converter for Grid Connected Energy Storage Systems

  • Chen, Jianliang;Liao, Xiaozhong;Sha, Deshang
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1026-1034
    • /
    • 2015
  • In this paper, a unified control strategy using the current space vector modulation (CSVM) technique is proposed and applied to a bidirectional three-phase DC/AC converter. The operation of the converter changes with the direction of the power flow. In the charging mode, it works as a buck type rectifier; and during the discharging mode, it operates as a boost type inverter, which makes it suitable as an interface between high voltage AC grids and low voltage energy storage devices. This topology has the following advantages: high conversion efficiency, high power factor at the grid side, tight control of the charging current and fast transition between the charging and discharging modes. The operating principle of the mode analysis, the gate signal generation, the general control strategy and the transition from a constant current (CC) to a constant voltage (CV) in the charging mode are discussed. The proposed control strategy has been validated by simulations and experimental results obtained with a 1kW laboratory prototype using supercapacitors as an energy storage device.

Power Factor Correction of Single-phase PWM Converter using Third Harmonic Injection (3차 고조파 주입에 의한 단상 PWM컨버터의 고역률 제어)

  • 손진근;유성식;김병진;박종찬;전희종
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.25-33
    • /
    • 1999
  • In this paper, the method of reducing hanmnics and correcting of power factor in single PWM converter associated with diode rectifier and boost converter is studied. In the general diode rectifier there are sorre problems that discontinuous current of reducing power factor and including distortion of hanmnics at the input current affects other sources. To solve the problems of performance degradation due to pulse wavefonn in the input current, the ac-dc converter in which the hanmnic distortion in the input current is reduced using a third-hanmnic-injected PWM is proposed. A lower power loss of switching and easy configuration of circuit are obtained by adopting discontinuous current mode. Simulation and experimental results of ac-dc converter with 5[kHz] switching frequency are presented and correction of power factor and reduction of total hanmnic distortion was established.lished.

  • PDF

Three Phase Embedded Z-Source Inverter (3상 임베디드 Z-소스 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.486-494
    • /
    • 2012
  • In this paper, we proposes the three-phase embedded Z-source inverter consisting of the three embedded Z-source converters and it's the output voltage control method. Each embedded Z-source converter can produce the bipolar output capacitor voltages according to duty ratio D such as single-phase PWM inverter. The output AC voltage of the proposed system is obtained as the difference in the output capacitor voltages of each converter, and the L-C output filter is not required. Because the output AC voltage can be stepped up and down, the boost DC converter in the conventional two-stage inverter is unnecessary. To confirm the validity of the proposed system, PSIM simulation and a DSP based experiment were performed under the condition of the input DC voltage 38V, load $100{\Omega}$, and switching frequency 30kHz. Each converter is connected by Y-connection for three-phase loads. In case that the output phase voltage is the same $38V_{peak}$ as the input DC voltage and is the 1.5 times($57V_{peak}$), the simulation and experimental results ; capacitor voltages, output phase voltages, output line voltages, inductor currents, and switch voltages were verified and discussed.