Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.4.1026

A Bidirectional Single-Stage DC/AC Converter for Grid Connected Energy Storage Systems  

Chen, Jianliang (School of Automation, Beijing Institute of Technology)
Liao, Xiaozhong (School of Automation, Beijing Institute of Technology)
Sha, Deshang (School of Automation, Beijing Institute of Technology)
Publication Information
Journal of Power Electronics / v.15, no.4, 2015 , pp. 1026-1034 More about this Journal
Abstract
In this paper, a unified control strategy using the current space vector modulation (CSVM) technique is proposed and applied to a bidirectional three-phase DC/AC converter. The operation of the converter changes with the direction of the power flow. In the charging mode, it works as a buck type rectifier; and during the discharging mode, it operates as a boost type inverter, which makes it suitable as an interface between high voltage AC grids and low voltage energy storage devices. This topology has the following advantages: high conversion efficiency, high power factor at the grid side, tight control of the charging current and fast transition between the charging and discharging modes. The operating principle of the mode analysis, the gate signal generation, the general control strategy and the transition from a constant current (CC) to a constant voltage (CV) in the charging mode are discussed. The proposed control strategy has been validated by simulations and experimental results obtained with a 1kW laboratory prototype using supercapacitors as an energy storage device.
Keywords
Bidirectional power flow; Current source converter; Energy storage system;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Z. Qin, D. Sha, and X. Liao, “A three-phase boost-type grid-connected inverter based on synchronous reference frame control,” Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty- Seventh Annual IEEE, pp. 384,388, 2012.
2 B. Sahan, A. N. Vergara, N. Henze, A. Engler, and P. Zacharias, “A single-stage PV module integrated converter based on a low-power current-source inverter,” IEEE Trans. Ind. Electron., Vol. 55, No. 7, pp. 2602-2609, Jul. 2008.   DOI
3 Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE Trans. Power Electron., Vol. 23, No. 5, pp. 2301-2309, Sep. 2008.   DOI
4 C. Y. Inaba, E. Hiraki, and M. Nakaoka, “Three phase voltage source soft switching inverter with high frequency pulse current transformers,” Journal of Power Electronics, Vol. 2, No. 4, pp. 288-296, Oct. 2002.
5 X. H. Wu, S. K. Panda, and J. X. Xu, “Design of a plug-in repetitive control scheme for eliminating supply-side current harmonics of three-phase PWM boost rectifiers under generalized supply voltage conditions,” IEEE Trans. Power Electron., Vol. 25, No. 7, pp. 1800-1810, Jul. 2010.   DOI
6 B.-D. Min, J.-P. Lee, J.-H. Kim, T.-J. Kim, D.-W. Yoo, K.-R. Ryu, J.-J. Kim, and E.-H. Song, “A novel grid-connected PV PCS with new high efficiency converter,” Journal of Power Electronics, Vol. 8, No. 4, pp. 309-316. Oct. 2008.
7 Y. Zhang; J. Liu, and C. Zhang, “Comparison of traditional two-stage buck-boost voltage source inverter and diode-assisted buck-boost voltage source inverter,” Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE, pp.141,148, 2012.
8 D. Sha and Z. Qin, “A digitally controlled three-phase cycloconverter type high frequency ac link inverter using space vector modulation,” Journal of Power Electronics, Vol. 11, No. 1, pp. 28-36, Jan. 2011.   DOI
9 D. Sha, G. Xu, and X. Liao, “Control strategy for input-series-output-series high-frequency AC-link inverters,” IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5283-5292, Nov. 2013.   DOI
10 S. M. Dehghan, M. Mohamadian, and A. Yazdian “Current-type nine-switch inverters,” Journal of Power Electronics, Vol. 10, No. 2, pp. 146-154, Mar. 2010.   DOI
11 B. Mirafzal, M. Saghaleini, and A. K. Kaviani, “An SVPWM-Based switching pattern for stand-alone and grid-connected three-phase single-stage boost inverters,” IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1102-1111, Apr. 2011.   DOI
12 Sang-Hyup Han, Heung-Geun Kim, Honnyong Cha, Tae-Won Chun, and Eui-Cheol Nho, “Bi-directional multi-level converter for an energy storage system,” Journal of Power Electronics, Vol. 14, No. 3, pp. 499-506, May 2014.   DOI
13 D.-H. Jang and S.-K. Han, “Low cost high power density photovoltaic power conditioning system with an energy storage system,” Journal of Power Electronics, Vol. 12, No. 3, pp. 487-494, May 2010   DOI
14 B.-Y. Chen and Y.-S. Lai, “New digital-controlled technique for battery charger with constant current and voltage control without current feedback,” IEEE Trans. Ind. Electron., Vol. 59, No. 3, pp. 1545,1553, Mar. 2012.   DOI
15 P. A. Cassani and S. S. Williamson, “Design, testing, and validation of a simplified control scheme for a novel plug-in hybrid electric vehicle battery cell equalizer,” IEEE Trans. Ind. Electron., Vol. 57, No. 12, pp. 3956-3962, Dec. 2010.   DOI
16 Y.-S. Lee and D. Jiun-Yi, “Fuzzy-controlled individual-cell equaliser using discontinuous inductor current-mode Cuk convertor for lithium-ion chemistries,” IEE Proceedings Electric Power Applications, Vol. 152, No. 5, pp. 1271-1282, Sep. 2005.   DOI