• Title/Summary/Keyword: Book recommendation

Search Result 72, Processing Time 0.021 seconds

Personalized Book Curation System based on Integrated Mining of Book Details and Body Texts (도서 정보 및 본문 텍스트 통합 마이닝 기반 사용자 맞춤형 도서 큐레이션 시스템)

  • Ahn, Hee-Jeong;Kim, Kee-Won;Kim, Seung-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.33-43
    • /
    • 2017
  • The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.

Cross Media-Platform Book Recommender System: Based on Book and Movie Ratings (사용자 영화취향을 반영한 크로스미디어 플랫폼 도서 추천 시스템)

  • Kim, Seongseop;Han, Sunwoo;Mok, Ha-Eun;Choi, Hyebong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.582-587
    • /
    • 2021
  • Book recommender system, which suggests book to users according to their book taste and preference effectively improves users' book-reading experience and exposes them to variety of books. Insufficient dataset of book rating records by users degrades the quality of recommendation. In this study, we suggest a book recommendation system that makes use of user's book ratings collaboratively with user's movie ratings where more abundant datasets are available. Through comprehensive experiment, we prove that our methods improve the recommendation quality and effectively recommends more diverse kind of books. In addition, this will be the first attempt for book recommendation system to utilize movie rating data, which is from the media-platform other than books.

A Study on the Teacher Librarians' Book Recommendation Services for Individual Students (개별 학생을 위한 사서교사의 독서자료 추천활동에 대한 연구)

  • Lee, Yeon-Ok
    • Journal of Korean Library and Information Science Society
    • /
    • v.52 no.4
    • /
    • pp.127-152
    • /
    • 2021
  • The purpose of this study is to analyze the aspects of teacher librarians' book recommendation services for individual readers. For this purpose, data were collected through in-depth interviews with the teacher librarians of elementary school. Through the analysis of the collected data, the process of the teacher librarians' book recommendation, the main characteristics of the book recommendation, and the factors considering in the book recommendation, as well as information on major issues that arise in the book recommendation activity were derived and presented. Specifically, it was confirmed that the teacher librarians's book recommendation process was implemented in the following stages: questioning and interviewing, book recommendation, and follow-up. And, it was investigated that the factors considered when recommending books were students' interest, reading history, book fun, reading level, book level, teacher, class, and curriculum. In addition, it was confirmed that differences occurred in the experiences and perceptions of teacher librarians in the process of considering these factors. These results can provide the implications for resolving the problems of the teacher librarians who perform book recommendation services.

Personalized Book Recommendation System based on Semantic Web (시맨틱웹 기반 개인 맞춤형 도서 추천 시스템)

  • Kim, Jin-Chun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1097-1104
    • /
    • 2011
  • In this paper, we propose a semantic web approach for personalized book recommendation. Our approach takes advantage of the content-based recommendation and improves its disadvantage that users should input their interesting fields into all book search systems they use. Our approach provides the sharing of users' profile with their interesting fields by enabling user's interesting fields to be described over each book classification ontology of various book information providers. We also provide a middleware that manages users' profiles written in RDF and analizes similarity between user's interesting field and each concept over the book classification ontology. Our approach provide better performance than traditional keyword-based search by sharing the user's profile among book recommendation systems.

A Study on the Development of the School Library Book Recommendation System Using the Association Rule (연관규칙을 활용한 학교도서관 도서추천시스템 개발에 관한 연구)

  • Lim, Jeong-Hoon;Cho, Changje;Kim, Jongheon
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.3
    • /
    • pp.1-22
    • /
    • 2022
  • The purpose of this study is to propose a book recommendation system that can be used in school libraries. The book recommendation system applies an algorithm based on association rules using DLS lending data and is designed to provide personalized book recommendation services to school library users. For this purpose, association rules based on the Apriori algorithm and betweenness centrality analysis were applied and detailed functions such as descriptive statistics, generation of association rules, student-centered recommendation, and book-centered recommendation were materialized. Subsequently, opinions on the use of the book recommendation system were investigated through in-depth interviews with teacher librarians. As a result of the investigation, opinions on the necessity and difficulty of book recommendation, student responses, differences from existing recommendation methods, utilization methods, and improvements were confirmed and based on this, the following discussions were proposed. First, it is necessary to provide long-term lending data to understand the characteristics of each school. Second, it is necessary to discuss the data integration plan by region or school characteristics. Third, It is necessary to establish a book recommendation system provided by the Comprehensive Support System for Reading Education. Based on the contents proposed in this study, it is expected that various discussions will be made on the application of a personalization recommendation system that can be used in the school library in the future.

Development of a Book Recommendation System using Case-based Reasoning (사례기반 추론을 이용한 서적 추천시스템의 개발)

  • 이재식;정석훈
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.305-314
    • /
    • 2002
  • In order to adapt to today's rapidly changing environment and gain a competitive advantage, many companies are interested in CRM(Customer Relationship Management). Especially, the product recommendation system that can be implemented by personalizing the marketing strategy becomes the focus of CRM. In this research, we employed CBR(Case-Based Reasoning) technique that can overcome the limitation of CF(Collaborative Filtering) technique. Our system recommends the books that the customer is very likely to buy next time considering the factors such as 'Personal Features of Customer,' Similarity between Book Categories' and 'Sequence of Book Purchases'. Accuracy of predicting a book-not a particular book, but in the middle level of classification that contains about 190 categories-was about 57%.

  • PDF

Developing a Book Recommendation System Using Filtering Techniques (필터링 기법을 이용한 도서 추천 시스템 구축)

  • Chung, Young-Mee;Lee, Yong-Gu
    • Journal of Information Management
    • /
    • v.33 no.1
    • /
    • pp.1-17
    • /
    • 2002
  • This study examined several recommendation techniques to construct an effective book recommender system in a library. Experiments revealed that a hybrid recommendation technique is more effective than either collaborative filtering or content-based filtering technique in recommending books to be borrowed in an academic library setting. The recommendation technique based on association rule turned out the lowest in performance.

A Study on the Book Recommendation Standards of Book-Curation Service for School Library (학교도서관 북 큐레이션 서비스를 위한 도서추천 기준에 관한 연구)

  • Park, Yang-Ha
    • Journal of Korean Library and Information Science Society
    • /
    • v.47 no.1
    • /
    • pp.279-303
    • /
    • 2016
  • This study proposes the Book-Curation service as part of the information service offered through school library websites. Also, this study aims to establish recommendation standards for curation prior to detailed system planning. For such service, the following tasks were carried out. First, the list of recommended books of existing systems were analyzed to identify the attributes that can be used for recommendation in the user and book information. Second, the analyzed attributes were utilized to establish 12 recommendation standards. Finally, a survey was carried out to identify the user preferences as to each standards. The results are as follows. First, the majority of students responded that curation service is necessary for using a library. Second, the top three standards are as follows: "best lending books based on the keywords of individual users"; "best lending books of the same year students"; "best lending books on the textbook-related reference booklist".

Implementation of the Unborrowed Book Recommendation System for Public Libraries: Based on Daegu D Library (공공도서관 미대출 도서 추천시스템 구현 : 대구 D도서관을 중심으로)

  • Jin, Min-Ha;Jeong, Seung-Yeon;Cho, Eun-Ji;Lee, Myoung-Hun;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.175-186
    • /
    • 2021
  • The roles and functions of domestic public libraries are diversifying, but various problems have emerged due to internally biased book lending. In addition, due to the 4th Industrial Revolution, public libraries have introduced a book recommendation system focusing on popular books, but the variety of books that users can access is limited. Therefore, in this study, the public library unborrowed book recommendation system was implemented limiting its spatial scope to Duryu Library in Daegu City to enhance the satisfaction of public library users, by using the loan records data (213,093 cases), user information (35,561 people), etc. and utilizing methods like cluster analysis, topic modeling, content-based filtering recommendation algorithm, and conducted a survey on actual users' satisfaction to present the possibility and implications of the unborrowed book recommendation system. As a result of the analysis, the majority of users responded with high satisfaction, and was able to find the satisfaction was relatively high in the class classified by specific gender, age, occupation, and usual reading. Through the results of this study, it is expected that some problems such as biased book lending and reduced operational efficiency of public libraries can be improved, and limitations of the study was also presented.

A Study on the Development and Evaluation of Personalized Book Recommendation Systems in University Libraries Based on Individual Loan Records (대출 기록에 기초한 대학 도서관 도서 개인화 추천시스템 개발 및 평가에 관한 연구)

  • Hong, Yeonkyoung;Jeon, Seoyoung;Choi, Jaeyoung;Yang, Heeyoon;Han, Chaeeun;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.2
    • /
    • pp.113-127
    • /
    • 2021
  • The purpose of this study is to propose a personalized book recommendation system to promote the use of university libraries. In particular, unlike many recommended services that are based on existing users' preferences, this study proposes a method that derive evaluation metrics using individual users' book rental history and tendencies, which can be an effective alternative when users' preferences are not available. This study suggests models using two matrix decomposition methods: Singular Value Decomposition(SVD) and Stochastic Gradient Descent(SGD) that recommend books to users in a way that yields an expected preference score for books that have not yet been read by them. In addition, the model was implemented using a user-based collaborative filtering algorithm by referring to book rental history of other users that have high similarities with the target user. Finally, user evaluation was conducted for the three models using the derived evaluation metrics. Each of the three models recommended five books to users who can either accept or reject the recommendations as the way to evaluate the models.