Implementation of the Unborrowed Book Recommendation System for Public Libraries: Based on Daegu D Library |
Jin, Min-Ha
(School of Management/Data Science, Handong Global University)
Jeong, Seung-Yeon (Department of Statistics, Kyungpook National University) Cho, Eun-Ji (Department of Computer Science, Yeungnam University) Lee, Myoung-Hun (Department of Mathematics, Kyungpook National University) Kim, Keun-Wook (Big Data Center, Daegu Digital Industry Promotion Agency) |
1 | D. W. Park. (2020). A Study on Architecture for BigData-based Book Curation System |
2 | K. J. Kim & H. C. Ahn. (2009). User-Item Matrix Reduction Technique for Personalized Recommender Systems. Journal of Information Technology Applications & Management, 16(1), 97-113. |
3 | Y. J. Lee & C. H. Lee. (2020). What Do The Algorithms of The Online Video Platform Recommend: Focusing on Youtube K-pop Music Video. Journal of the Korea Contents Association, 20(4), 1-13. DOI : 10.5392/JKCA.2020.20.04.001 DOI |
4 | Airoldi. M & Beraldo, D & Gandini, A. (2016). Follow the algorithm : An exploratory investigation of music on Youtube. Journal of Poetics, 57, 1-13. DOI : 10.1016/j.poetic.2016.05.001 DOI |
5 | Y. J. Jung & H. J. Kim. (2020). A Study on the School Library Research Trends Using Topic Modeling. Journal of Korean Library and Information Science Society, 51(3), 103-121. DOI : 10.16981/kliss.51.3.202009.103 DOI |
6 | I. S. Choi & S. K. Park & Y. H. Cho & C. Y. Lee & A. W. Kim & W. C. Kim. (2020). Developing a Book Recommendation Model Based on Reading Level Using Book Information and Book Review Data. Journal of the Korean Institute of Industrial Engineers, 46(3), 179-189. DOI : 10.7232/JKIIE.2020.46.3.179 DOI |
7 | S. Y. Yun & S. D. Yoon. (2020). Item-Based Collaborative Filtering Recommendation Technique Using Product Review Sentiment Analysis. Journal of the Korea Institute of Information and Communication Engineering, 24(8), 970-977. DOI : 10.6109/jkiice.2020.24.8.970 DOI |
8 | H. W. An & N. M. Moon. (2019). Influential Factor Based Hybrid Recommendation System with Deep Neural Network-Based Data Supplement. Journal of Broadcast Engineering, 24(3), 515-526. DOI : 10.5909/JBE.2019.24.3.515 DOI |
9 | E. Y. Bae & S. J. Yu. (2018). Keyword-based Recommender System Dataset Construction and Analysis. Journal of Korean Institute of Information Technology, 16(6), 91-99. DOI : 10.14801/jkiit.2018.16.6.91 DOI |
10 | Barragans-Martinez, A. B. & Costa-Montenegro, E. & Burguillo, J. C. & Rey-Lopez, M. & Mikic-Fonte, F. A. & Peleteiro, A. (2010). A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition. Information sciences, 180(22), 4290-4311. DOI : 10.1016/j.ins.2010.07.024 DOI |
11 | J. Y. Kang & H. S. Lim. (2019). Proposal of Content Recommend System on Insurance Company Web Site Using Collaborative Filtering. Journal of Digital Convergence, 17(11), 201-206. DOI : 10.14400/JDC.2019.17.11.201 DOI |
12 | Y. J. Jung & Y. H. Cho. (2017). Topic Modeling-based Book Recommendations Considering Online Purchase Behavior. Knowledge Management Research, 18(4), 97-118. DOI : 10.15813/kmr.2017.18.4.004 DOI |
13 | H. S. Kim & B. R. Kang. (2019). Analysis of Research Topics among Library, Archives and Museums using Topic Modeling. Journal of Korean Library and Information Science Society, 50(4), 339-358. DOI : 10.16981/kliss.50.201912.339 DOI |
14 | Y. J. Shin & Y. H. Noh. (2020). A Study on the Program Structure and Activation Plan of the Complex Cultural Space in Public Library. Journal of the Korean Society for Library and Information Science, 54(1), 89-114. DOI : 10.4275/KSLIS.2020.54.1.089 DOI |
15 | Y. S. Kim. (2007). A Study on the Effective Enhancement of the Public Library Infrastructure in Korea: Focusing on the Operation of Small Public Libraries in the UK. Journal of Korean Library and Information Science Society, 38(1), 29-48. DOI : 10.16981/kliss.38.1.200703.29 DOI |
16 | W. S. Kim. (2019). Content Recommendation Techniques for Personalized Software Education. Journal of Digital Convergence, 17(8), 95-104. DOI : 10.14400/JDC.2019.17.8.095 DOI |
17 | H. Y. Cho. (2017). A Experimental Study on the Development of a Book Recommendation System Using Automatic Classification, Based on the Personality Type. Journal of Korean Library and Information Science Society, 48(2), 215-236. DOI : 10.16981/kliss.48.201706.215 DOI |
18 | Y. S. Jeong. (2018). A study on the Book Recommendation Model Using Big Data. |
19 | Keita Tsuji et al. (2014). Book Recommendation Based on Library Loan Records and Bibliographic Information. Journal of Procedia - Social and Behavioral Sciences, 147, 478-486. DOI : 10.1016/j.sbspro.2014.07.142 DOI |
20 | J. E. Son & S. B. Kim & H. J. Kim & S. Z. Cho. (2015). Review and Analysis of Recommender Systems. Journal of the Korean Institute of Industrial Engineers, 41(2), 185-208. DOI : 10.7232/JKIIE.2015.41.2.185 DOI |
21 | B. H. Oh & J. H. Yang & H. J. Lee. (2014). A Hybrid Recommender System based on Collaborative Filtering with Selective Utilization of Content-based Predicted Ratings. Journal of KISS : Software and Applications, 41(4), 289-294. DOI : 10.1016/j.procir.2019.04.126 DOI |
22 | Yonghong Tian & Bing Zheng & Yanfang Wang & Yue Zhang & Qi Wu. (2019). College Library Personalized Recommendation System Based on Hybrid Recommendation Algorithm. Journal of Procedia CIRP, 83, 490-494. DOI : 10.1016/j.procir.2019.04.126 DOI |