Abstract
In this paper, we propose a semantic web approach for personalized book recommendation. Our approach takes advantage of the content-based recommendation and improves its disadvantage that users should input their interesting fields into all book search systems they use. Our approach provides the sharing of users' profile with their interesting fields by enabling user's interesting fields to be described over each book classification ontology of various book information providers. We also provide a middleware that manages users' profiles written in RDF and analizes similarity between user's interesting field and each concept over the book classification ontology. Our approach provide better performance than traditional keyword-based search by sharing the user's profile among book recommendation systems.
본 논문에서는 개인 맞춤 도서 추천을 위한 시맨틱웹 접근방법을 제안한다. 제안방법은 콘텐츠 기반 추천을 이용하면서도 사용자가 모든 도서 검색 시스템에 자신의 관심분야를 등록해야 하는 단점을 개선한다. 제안방법은 다양한 서지정보제공자의 도서분류 온톨로지상에서 자신의 관심분야를 등록할 수 있게 함으로써 사용자 프로파일을 공유한다. 또한 사용자 프로파일 관리 시스템은 제안방법에 의해 작성된 사용자 프로파일을 관리하고, 사용자의 관심분야와 도서분류 온톨로지상의 각 개념과의 유사성을 분석하는 기능을 제공한다. 제안방법은 사용자 프로파일의 공유를 통해 기존 키워드 검색에 비해 더 향상된 효율성을 제공한다.