• Title/Summary/Keyword: Bone marrow cells

Search Result 883, Processing Time 0.032 seconds

Efficacy Study of Kami-honghwa-tang on the Reduction of Side Effects of Radiotherapy (가미홍화탕의 방사선 부작용 억제 효능연구)

  • Moon, Geun-Ah;Song, Nak-Geun;Park, Seong-Jin;Yoon, Yoo-Sik
    • Korean Journal of Oriental Medicine
    • /
    • v.9 no.2
    • /
    • pp.107-119
    • /
    • 2003
  • In this study, Kami-honghwa-tang (KH-19) was designed and animal study was conducted to evaluate its efficacy on the reduction of the side effect of radiotherapy. Bone marrow toxicity is one of the major side effect of radiotherapy which cause the reduction of blood cells, and KH-19 was designed to protect and enforce blood. C57BL/6 mice were irradiated with 4 Gy of gamma ray, and divided into control group which was treated with water and KH-19 group which was treated with 1.5g/Kg of KH-19 up to 4 weeks. KH-19 group showed significantly increased white blood cells, lymphocytes and platelet count compared with control group (p<0.05). When bone marrows were examined, KH-19 group showed higher cell densities than control group (p=0.06). KH-19 may increase blood cell count after radiation by its protective effects on bone marrow.

  • PDF

Effect of Polysaccharide Extracted from Panax ginseng on Murine Hematopoiesis (인삼 다당체가 생쥐의 조혈과정에 미치는 영향)

  • 송지영;이세윤;정인성;윤연숙
    • Journal of Ginseng Research
    • /
    • v.25 no.2
    • /
    • pp.63-67
    • /
    • 2001
  • We previously reported that acidic polysaccharide from Panax ginseng induced the proliferation lymphocytes and the generation of activated killer cells. Here we found that polysaccharide (PG-75) precipitated with 75% EtOH from water extract of Panax ginseng also has both in vitron and in vivo hematopoietic activities. In vitro studied with bone marrow cells from BALB/c mouse revealed that PG-75 had direct effect on hematopoietic colony-forming cell(CFC) growth, increased granulocyte macrophage-colony forming cell numbers by 1.59 fold over than non-treated. the ability of PG-75 to modulate hematopoiesis in vivo was evaluated the bone marrow and spleen celluarity, granulocyte-macrophage progenitor cells. BALB/c female mice were administered G-75 intraperitoneally, PG-75 was found to significantly increase the number of BM cells, spleen cells, GM-CFU on 3 hours after injection. PG-75 was also able to induce significant augmentation of GM-CSF and IFN-${\gamma}$, production in sera. These studies illustrate than PG-75 has hematopoietic activities and that this agent may be useful in the prevention and/or treatment of radio- or chemotherapy-associated myelosuppression.

  • PDF

The effect of 100KHz PWM LED light irradiation on RAT bone-marrow cells (100kHz PWM LED 광조사가 백서 골수세포에 미치는 영향)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Kim, Young-Pyo;Lee, Ho-Sic;Park, Yong-Pil;Yu, Seong-Mi;Lee, Hee-Gap;Kim, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.512-513
    • /
    • 2008
  • The study examined what effects 100kHz PWM LED light irradiation causes to bone marrow cells of SD-Rat when LED characterized cheap and safe is used onto the light therapy by replacing the low 1evel laser. We developed the equipment palpating cell proliferation using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on. Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Consequent1y, the current value could be controlled by the change of 1eve1 in Continue Wave(CW) and Pulse Width Modulation(PWM), and the output of a high brightness LED could be controlled stage by stage. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590nm transmittance of ELISA reader. As a result, the cell increase of Rat bone marrow cells was verified in 100kHz PWM LED light irradiation group as compared to non-irradiation group.

  • PDF

The Differentiation of bone Marrow Stromal Cells into NP-like Cells through 3-Dimensional Co-culture System (3차원 Co-culture 시스템을 통한 BMSC의 NP-like Cell로의 분화)

  • Kim, D.H.;Kim, S.H.;Heo, S.J.;Shin, J.W.;Kim, Y.J.;Park, S.H.;Jun, J.W.;Shin, J.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.159-163
    • /
    • 2008
  • The goal of this study is to investigate the effect and potential of three-dimensional Co-culture of BMSCs (bone marrow stromal Cells) and NP (nucleus pulposus) Cells on the differentiation of BMSCs into NP-like Cells. The NP Cells and BMSCs were isolated and cultured from New Zealand White rabbits. The isolated NP Cells and BMSCs were prepared in different alginate beads. Those two types of beads were separated by a track-etched membrane of $3\;{\mu}m$ pore in a 6-well culture plate. No growth factors were used. In addition to these, NP and BMSC were cultured in the beads independently for control. The number of Cells in Co-culturing system was half of those in two control groups. Proliferation and production of glycosaminoglycan (GAG) were evaluated along with histological observation. The GAG production rate(GAG contents/Cell) of Co-cultured BMSCs were much higher than that of BMSCs cultured alone. The total amounts of GAG produced by BMSCs in Co-culturing system were larger than those produced by BMSCs in control group and were comparable with those produced by NP alone even the number of each Cell was half of BMSCs in Co-culturing system. This study showed the potential of differentiation of BMSCs into NP-like Cells through three-dimensional Co-culture system even without any chemical agents.

BONE TISSUE ENGINEERING USING PLLA/HA COMPOSITE SCAFFOLD AND BONE MARROW MESENCHYMAL STEM CELL (PLLA/HA Composite Scaffold와 골수 줄기세포를 이용한 조직공학적 골재생에 대한 연구)

  • Kim, Byeong-Yol;Jang, Hyon-Seok;Rim, Jae-Suk;Lee, Eui-Seok;Kim, Dong-Hyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.4
    • /
    • pp.323-332
    • /
    • 2008
  • Aim of the study: Scaffolds are crucial to tissue engineering/regeneration. Biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. In this study, poly(L-lactide)/hydroxyapatite(PLLA/HA) composite scaffolds were fabricated for in vivo bone tissue engineering. Material & methods: In this study, PLLA/HA composite microspheres were prepared by double emulsion-solvent evaporation method, and were evaluated in vivo bone tissue engineering. Bone marrow mesenchymal stem cell from rat iliac crest was differentiated to osteoblast by adding osteogenic medium, and was mixed with PLLA/HA composite scaffold in fibrin gel and was injected immediately into rat cranial bone critical size defect(CSD:8mm in diameter). At 1. 2, 4, 8 weeks after implantation, histological analysis by H-E staining, histomorphometric analysis and radiolographic analysis were done. Results: BMP-2 loaded PLLA/HA composite scaffolds in fibrin gel delivered with osteoblasts differentiated from bone marrow mesenchymal stem cells showed rapid and much more bone regeneration in rat cranial bone defects than control group. Conclusion: This results suggest the feasibility and usefulness of this type of scaffold in bone tissue engineering.

Diffuse Hypermetabolism at Bone Marrow in F-18 FDG PET/CT: Correlation with Bone Marrow Biopsy and Complete Blood Cell Counts (F-18 FDC PET/CT에서 미만성 골수 섭취증가: 골수 생검 및 혈액 검사와의 연관성 비교)

  • Kang, Yun-Hee;Lim, Seok-Tae;Jeong, Young-Jin;Kim, Dong-Wook;Jeong, Hwan-Jeong;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.1
    • /
    • pp.35-39
    • /
    • 2009
  • Purpose: Increased FDG uptake in the bone marrow has been reported in patients taking erythropoietin or granulocyte-colony stimulating factor (G-CSF). The aim of this study is to investigate the correlation between F-18 FDG uptake in the bone marrow and bone marrow finding, hematological parameters. Materials and Methods: Twenty patients who had diffuse FOG uptake at the bone marrow and received hematological examinations, bone marrow biopsy within 10 days before or after PET/CT were enrolled in this study. Among them, 11 patients were excluded; 4 patients received G-CSF or erythropoietin before PET/CT. Seven patients showed definite pathology in a bone marrow biopsy. The parameters included the measurement of WBC, hemoglobin, platelet and cellularity of the bone marrow. Results: Bone marrow FDG uptake was correlated with a low hemoglobin but not WBC, platelet. Histopathologic findings in marrow biopsies were various: normal finding (n=3), hyperplasia of granulocytic cells (n=2), eosinophilic hyperplasia (n=1), reactive lymphoid nodules (n=1), hypercelluar marrow (n=1), hypocelluar marrow (n=1). All patients except two, showed normal marrow celluarity. Conclusion: FOG uptake by bone marrow correlated with anemia but not WBC, platelet, bone marrow cellularity.

Computerized Image Analysis of Micronucleated Reticulocytes in Mouse Bone Marrow (컴퓨터 이미지 분석법을 이용한 마우스 골수세포에서 소핵의 계수)

  • 권정;홍미영;고우석;정문구;이미가엘
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.369-374
    • /
    • 2002
  • The present study was performed to validate an automated image analysis system (Loats Automated Micronucleus Scoring System) for the mouse bone marrow micronucleus assay, comparing with conventional microscopic scoring. Two studies were conducted to provide slides for a comparison of micro-nucleated polychromatic erythrocytes (MNPCEs) values collected manually to those collected by the auto-mated system. Test article A was used as an example of a compound negative for the induction of micronuclei and test article B was wed as a micronucleus-inducing agent to elicit a positive response. Cyclophosphamide was included to provide an positive control in two studies. Bone marrow samples were collected 24 h after administration of test article A and B in male ICR mice. The cells were fixed with absolute methanol and stained with May-Grunwald and Giemsa. The number of MNPCEs was determined by the analysis of 1000 total PCEs per bone marrow sample. In addition to micronucleus scoring, an index of bone marrow toxicity based on PCE ratio (% of PCEs to total erythrocytes) was determined for each sample. The automated and manual scoring was similar when the MNPCEs incidence induced by each test article was less than 10. However manual scoring was able to effectively enumerate micronucleated PCEs in mouse bone marrow when MNPCEs incidence was more than 10, such as cyclophosphamide treatment. Conversely, PCE ratio was superior in computer-assisted image analysis. Taken together, it is suggested that improvement of the automated image analysis may be necessary to render the automatic scoring as sensitive as manual scoring for routine counting of micronuclei, especially because it is superior in objectivity and high throughput scoring.

Identification of Genes Modulated by High Extracellular Calcium in Coculture of Mouse Osteoblasts and Bone Marrow Cells by Oligo Chip Assay

  • Kim, Hyung-Keun;Song, Mi-Na;Jun, Ji-Hae;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.53-65
    • /
    • 2006
  • Calcium concentration in the bone resorption lacunae is high and is in the mM concentration range. Both osteoblast and osteoclast have calcium sensing receptor in the cell surface, suggesting the regulatory role of high extracellular calcium in bone metabolism. In vitro, high extracellular calcium stimulated osteoclastogenesis in coculture of mouse osteoblasts and bone marrow cells. Therefore we examined the genes that were commonly regulated by both high extracellular calcium and $1,25(OH)_2vitaminD_3(VD3)$ by using mouse oligo 11 K gene chip. In the presence of 10 mM $[Ca^{2+}]e$ or 10 nM VD3, mouse calvarial osteoblasts and bone marrow cells were co-cultured for 4 days when tartrate resistant acid phosphatase-positive multinucleated cells start to appear. Of 11,000 genes examined, the genes commonly regulated both by high extracellular calcium and by VD3 were as follows; 1) the expression of genes which were osteoclast differentiation markers or were associated with osteoclastogenesis were up-regulated both by high extracellular calcium and by VD3; trap, mmp9, car2, ctsk, ckb, atp6b2, tm7sf4, rab7, 2) several chemokine and chemokine receptor genes such as sdf1, scya2, scyb5, scya6, scya8, scya9, and ccr1 were up-regulated both by high extracellular calcium and by VD3, 3) the genes such as mmp1b, mmp3 and c3 which possibly stimulate bone resorption by osteoclast, were commonly up-regulated, 4) the gene such as c1q and msr2 which were related with macrophage function, were commonly down-regulated, 5) the genes which possibly stimulate osteoblast differentiation and/or mineralization of extracellular matrix, were commonly down-regulated; slc8a1, admr, plod2, lox, fosb, 6) the genes which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were commonly up-regulated; s100a4, npr3, mme, 7) the genes such as calponin 1 and tgfbi which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were up-regulated by high extracellular calcium but were down-regulated by VD3. These results suggest that in coculture condition, both high extracellular calcium and VD3 commonly induce osteoclastogenesis but suppress osteoblast differentiation/mineralization by regulating the expression of related genes.

Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs)

  • Nam, Sorim;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • Myeloid-derived suppressor cells (MDSCs) that are able to suppress T cell function are a heterogeneous cell population frequently observed in cancer, infection, and autoimmune disease. Immune checkpoint molecules, such as programmed death 1 (PD-1) expressed on T cells and its ligand (PD-L1) expressed on tumor cells or antigen-presenting cells, have received extensive attention in the past decade due to the dramatic effects of their inhibitors in patients with various types of cancer. In the present study, we investigated the expression of PD-1 on MDSCs in bone marrow, spleen, and tumor tissue derived from breast tumor-bearing mice. Our studies demonstrate that PD-1 expression is markedly increased in tumor-infiltrating MDSCs compared to expression in bone marrow and spleens and that it can be induced by LPS that is able to mediate $NF-{\kappa}B$ signaling. Moreover, expression of PD-L1 and CD80 on $PD-1^+$ MDSCs was higher than on $PD-1^-$ MDSCs and proliferation of MDSCs in a tumor microenvironment was more strongly induced in $PD-1^+$ MDSCs than in $PD-1^-$ MDSCs. Although we could not characterize the inducer of PD-1 expression derived from cancer cells, our findings indicate that the study on the mechanism of PD-1 induction in MDSCs is important and necessary for the control of MDSC activity; our results suggest that $PD-1^+$ MDSCs in a tumor microenvironment may induce tumor development and relapse through the modulation of their proliferation and suppressive molecules.

Clinical Use of Mesenchymal Stem Cells in Bone Regeneration (중간엽 줄기세포를 이용한 골재생의 임상적 활용)

  • Park, Chan-Woo;Lim, Seung-Jae;Park, Youn-Soo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.6
    • /
    • pp.490-497
    • /
    • 2019
  • Owing to the recent advances in biological knowledge on stem cells, many efforts are being made to apply them to clinical practice. Although mesenchymal stem cells were first found in bone marrow aspirates, they are understood to be multipotent stromal cells that can be extracted from a variety of tissues, such as adipose, dermal, skeletal muscle, and umbilical-cord tissues. The osteogenicity of mesenchymal stem cells has been verified through various experiments and animal studies. Some successful bone regenerations have also been reported in difficult clinical situations, such as large bone defects, osteonecrosis, and nonunion. On the other hand, there are no standardized indications or application methods for each clinical situation, and convincing evidence of its efficacy and safety is still lacking. Bone regeneration therapies using mesenchymal stem cells are likely to expand further in the future, but there are some issues that need to be addressed in order for them be recognized as standard treatments.