Identification of Genes Modulated by High Extracellular Calcium in Coculture of Mouse Osteoblasts and Bone Marrow Cells by Oligo Chip Assay

  • Kim, Hyung-Keun (Dept. of Pharmacology and Dental Therapeutics, School of Dentistry & Dental Research Institute, Seoul National University) ;
  • Song, Mi-Na (Dept. of Pharmacology and Dental Therapeutics, School of Dentistry & Dental Research Institute, Seoul National University) ;
  • Jun, Ji-Hae (Dept. of Pharmacology and Dental Therapeutics, School of Dentistry & Dental Research Institute, Seoul National University) ;
  • Woo, Kyung-Mi (Dept. of Pharmacology and Dental Therapeutics, School of Dentistry & Dental Research Institute, Seoul National University) ;
  • Kim, Gwan-Shik (Dept. of Pharmacology and Dental Therapeutics, School of Dentistry & Dental Research Institute, Seoul National University) ;
  • Baek, Jeong-Hwa (Dept. of Pharmacology and Dental Therapeutics, School of Dentistry & Dental Research Institute, Seoul National University)
  • Published : 2006.06.30

Abstract

Calcium concentration in the bone resorption lacunae is high and is in the mM concentration range. Both osteoblast and osteoclast have calcium sensing receptor in the cell surface, suggesting the regulatory role of high extracellular calcium in bone metabolism. In vitro, high extracellular calcium stimulated osteoclastogenesis in coculture of mouse osteoblasts and bone marrow cells. Therefore we examined the genes that were commonly regulated by both high extracellular calcium and $1,25(OH)_2vitaminD_3(VD3)$ by using mouse oligo 11 K gene chip. In the presence of 10 mM $[Ca^{2+}]e$ or 10 nM VD3, mouse calvarial osteoblasts and bone marrow cells were co-cultured for 4 days when tartrate resistant acid phosphatase-positive multinucleated cells start to appear. Of 11,000 genes examined, the genes commonly regulated both by high extracellular calcium and by VD3 were as follows; 1) the expression of genes which were osteoclast differentiation markers or were associated with osteoclastogenesis were up-regulated both by high extracellular calcium and by VD3; trap, mmp9, car2, ctsk, ckb, atp6b2, tm7sf4, rab7, 2) several chemokine and chemokine receptor genes such as sdf1, scya2, scyb5, scya6, scya8, scya9, and ccr1 were up-regulated both by high extracellular calcium and by VD3, 3) the genes such as mmp1b, mmp3 and c3 which possibly stimulate bone resorption by osteoclast, were commonly up-regulated, 4) the gene such as c1q and msr2 which were related with macrophage function, were commonly down-regulated, 5) the genes which possibly stimulate osteoblast differentiation and/or mineralization of extracellular matrix, were commonly down-regulated; slc8a1, admr, plod2, lox, fosb, 6) the genes which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were commonly up-regulated; s100a4, npr3, mme, 7) the genes such as calponin 1 and tgfbi which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were up-regulated by high extracellular calcium but were down-regulated by VD3. These results suggest that in coculture condition, both high extracellular calcium and VD3 commonly induce osteoclastogenesis but suppress osteoblast differentiation/mineralization by regulating the expression of related genes.

Keywords

References

  1. Baran, D.T., Sorensen, A.M., Shalhoub, V., Owen, T., Stein, G, and Lian, J.: The rapid nongenomic actions of 1 alpha,25dihydroxyvitamin D3 modulate the hormone-induced increments in osteocalcin gene transcription in osteoblastlike cells. J. Cell. Biochem. 50:124-129,1992 https://doi.org/10.1002/jcb.240500203
  2. Breckon, J.J., Papaioannou, S., Kon, L.W., Tumber, A., Hembry, R.M., Murphy, G., Reynolds, J.J., and Meikle, M.C.: Stromelysin (MMP-3) synthesis is up-regulated in estrogen-deficient mouse osteoblasts in vivo and in vitro. J. Bone Miner. Res. 14:1880-1890, 1999 https://doi.org/10.1359/jbmr.1999.14.11.1880
  3. Brown, E.M. and MacLeod, R.J.: Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev. 81:239-297, 2001 https://doi.org/10.1152/physrev.2001.81.1.239
  4. Canalis, E., McCarthy, T., and Centrella, M.: Growth factors and the regulation of bone remodeling. J. Clin. Invest. 81:277-281,1988 https://doi.org/10.1172/JCI113318
  5. Chang, E., Lee, Z., and Kim, H.: Proteomic identification of the increase in creatine kinase brain isoform expression during osteoclastogenesis. J. Bone Miner. Res. 19(supp1.1):SU320,2004
  6. Duarte, W.R., Iimura, T., Takenaga, K., Ohya, K., Ishikawa, I., and Kasugai, S.: Extracellular role of S100A4 calciumbinding protein in the periodontal ligament. Biochem. Biophys. Res. Commun. 255:416-420,1999 https://doi.org/10.1006/bbrc.1999.0214
  7. Duarte, W.R., Shibata, T., Takenaga, K., Takahashi, E., Kubota, K., Ohya, K., Ishikawa, I., Yamauchi, M., and Kasugai, S.: S100A4: a novel negative regulator of mineralization and osteoblast differentiation. J. Bone Miner. Res. 18:493-501,2003 https://doi.org/10.1359/jbmr.2003.18.3.493
  8. Dvorak, M.M., Siddiqua, A., Ward, D.T., Carter, D.H., Dallas, S.L., Nemeth, E.F., and Riccardi, D.: Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl. Acad. Sci. U.S.A. 101:5140-5145, 2004
  9. Erickson-Miller, C.L., Freeman, S.D., Hopson, C.B., D'Alessio, K.J., Fischer, E.I., Kikly, K.K., Abrahamson, J.A., Holmes, S.D., and King, A.G.: Characterization of Siglec-5(CD170) expression and functional activity of antiSiglec-5 antibodies on human phagocytes. Exp. Hematol. 31:382-388,2003 https://doi.org/10.1016/S0301-472X(03)00046-8
  10. Fukuoka, H., Aoyama, M., Miyazawa, K., Asai, K., and Goto, S.: Hypoxic stress enhances osteoclast differentiation via increasing IGF2 production by non-osteoclastic cells. Biochem. Biophys. Res. Commun. 328:885-894, 2005 https://doi.org/10.1016/j.bbrc.2005.01.042
  11. Godwin, S.L. and Soltoff, S.P.: Extracellular calcium and platelet-derived growth factor promote receptor-mediated chemotaxis in osteoblasts through different signaling pathways. J. Biol. Chern. 272:11307-11312,1997 https://doi.org/10.1074/jbc.272.17.11307
  12. Graves, D.T., Jiang, Y., and Valente, A.J.: The expression of monocyte chemoattractant protein-l and other chemokines by osteoblasts. Front. Biosci. 4:D571-580, 1999 https://doi.org/10.2741/Graves
  13. Ha-Vinh, R., Alanay, Y., Bank, R.A., Campos-Xavier, A.B., Zankl, A, Superti-Furga, A, and Bonafe, L.: Phenotypic and molecular characterization of Bruck syndrome (osteogenesis imperfecta with contractures of the large joints) caused by a recessive mutationin PLOD2. Am. J. Med. Genet. A.131:115-120,2004
  14. Heath, D.J., Downes, S., Verderio, E., and Griffin, M.: Characterization of tissue transglutaminase in human osteoblast-like cells. J. Bone Miner. Res. 16: 1477-1485,2001 https://doi.org/10.1359/jbmr.2001.16.8.1477
  15. Hofbauer, L.C., Khosla, S., Dunstan, C.R., Lacey, D.L., Boyle, W.J., and Riggs, B.L.: The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J. Bone Miner. Res. 15:2-12,2000 https://doi.org/10.1359/jbmr.2000.15.1.2
  16. Holliday, L.S., Welgus, H.G, Hanna, J, Lee, B.S., Lu, M., Jeffrey, J.J., and Gluck, S.L.: Interstitial collagenase activity stimulates the formation of actin rings and ruffled membranes in mouse marrow osteoclasts. Calcif. Tissue Int. 72:206-214, 2003 https://doi.org/10.1007/s00223-002-1008-7
  17. Hong, M.H., Jin, C.H:, Sato, T., Ishimi, Y., Abe, E., and Suda, T.: Transcriptional regulation of the production of the third component of complement (C3) by 1 alpha,25-dihydroxyvitamin D3 in mouse marrow-derived stromal cells (ST2) and primary osteoblastic cells. Endocrinology 129:27742779,1991 https://doi.org/10.1210/endo-129-5-2774
  18. Huang, Z., Cheng, S.L., and Slatopolsky, E.: Sustained activation of the extracellular signal-regulated kinase pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J. Biol. Chem. 276:2135121358,2001 https://doi.org/10.1074/jbc.M010921200
  19. Inoue, D., Kido, S., and Matsumoto, T.: Transcriptional induction of FosB/DeltaFosB gene by mechanical stress in osteoblasts. J. Biol. Chem. 279:49795-49803, 2004 https://doi.org/10.1074/jbc.M404096200
  20. Jaubert, J., Jaubert, F., Martin, N., Washburn, L.L., Lee, B.K., Eicher, E.M., and Guenet, J.L.: Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr3). Proc. Natl. Acad. Sci. U.S.A. 96:10278-10283,1999
  21. Kameda, T., Mano, H., Yamada, Y., Takai, H., Amizuka, N., Kobori, M., Izumi, N., Kawashima, H., Ozawa, H., Ikeda, K., Kameda, A., Hakeda, Y., and Kumegawa, M.: Calciumsensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem. Biophys. Res. Commun. 245:419422,1998 https://doi.org/10.1006/bbrc.1998.8448
  22. Kim, M.S., Day, C.J., and Morrison, N.A.: MCP-l is induced by receptor activator of nuclear factor-$\kappa$B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of, osteoclast formation. J Biol. Chem. 280:16163-16169, 2005 https://doi.org/10.1074/jbc.M412713200
  23. Kim, Y.H., Kim, J.M., Kim, S.N., Kim, G.S., and Baek, J.H.: p44/42 MAPK activation is necessary for receptor activator of nuclear factor-$\kappa$B ligand induction by high extracellular calcium. Biochem. Biophys. Res. Commun. 304:729-735, 2003 https://doi.org/10.1016/S0006-291X(03)00661-2
  24. Komarova, S,V., Dixon, S.J., and Sims, S.M.: Osteoclast ion channels: potential targets for antiresorptive drugs, Curr. Pharm. Des. 7:637-654, 2001 https://doi.org/10.2174/1381612013397799
  25. Kukita, T., Wada, N., Kukita, A., Kakimoto, T., Sandra, F., Toh, K., Nagata, K., Iijima, T., Horiuchi, M., Matsusaki, H., Hieshima, K., Yoshie, O., and Nomiyama, H.: RANKLinduced DC-STAMP is essential for osteoclastogenesis, J. Exp. Med. 200:941-946, 2004 https://doi.org/10.1084/jem.20040518
  26. Kurata, M., Hirata, M., Watabe, S., Miyake, M., Takahashi, S.Y., and Yamamoto, Y.: Expression, purification, and inhibitory activities of mouse cytotoxic T-lymphocyte antigen-2alpha. Protein Expr. Purif. 32:119-125, 2003 https://doi.org/10.1016/S1046-5928(03)00222-5
  27. Lean, J.M., Murphy, C., Fuller, K., and Chambers, T.J.: CCL9/ MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J. Cell. Biochem. 87:386-393, 2002 https://doi.org/10.1002/jcb.10319
  28. Nurminskaya, M., Magee, C., Faverman, L., and Linsenmayer, T.F.: Chondrocyte-derived transglutaminase promotes maturation of preosteoblasts in periosteal bone. Dev. Biol. 263:139-152,2003 https://doi.org/10.1016/S0012-1606(03)00445-7
  29. Oba, Y., Lee, J.W., Ehrlich, L.A., Chung, H.Y., Jelinek, D.F., Callander, N.S., Horuk, R., Choi, S.J., and Roodman, G.D.: MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Exp. Hematol. 33:272-278, 2005 https://doi.org/10.1016/j.exphem.2004.11.015
  30. Okamatsu, Y., Kim, D., Battaglino, R., Sasaki, H., Spate, D., and Stashenko, P.: MIP-1 gamma promotes receptor-activatorof-NF-$\kappa$-B-ligand-induced osteoclast formation and survival. J. Immunol. 173:2084-2090, 2004 https://doi.org/10.4049/jimmunol.173.3.2084
  31. Pischon, N., Darbois, L.M., Palamakumbura, A.H., Kessler, E., and Trackman, P.C.: Regulation of collagen deposition and lysyl oxidase by tumor necrosis factor-$\alpha$ in osteoblasts. J. Biol. Chem. 279:30060-30065, 2004 https://doi.org/10.1074/jbc.M404208200
  32. Quinn, J.M.W., Elliot, J., Gillespie, M.T., and Martin, T.J.: A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology 139:4424-4427,1998 https://doi.org/10.1210/en.139.10.4424
  33. Ruchon, A.F., Marcinkiewicz, M., Ellefsen, K., Basak, A, Aubin, J., Crine, P., and Boileau, G: Cellular localization of neprilysin in mouse bone tissue and putative role in hydrolysis of osteogenic peptides. J. Bone Miner. Res. 15: 1266-1274,2000: https://doi.org/10.1359/jbmr.2000.15.7.1266
  34. Sato, T., Abe, E., Jin, C.H., Hong, M.H., Katagiri, T., Kinoshita, T., Amizuka, N., Ozawa, H., and Suda, T.: The biological roles of the third component of complement in osteoclast formation. Endocrinology 133:397-404, 1993 https://doi.org/10.1210/en.133.1.397
  35. Schilling, A.F., Schinke, T., Munch, C., Gebauer, M., Niemeier, A, Priemel, M., Streichert, T., Rueger, J.M.: and Amling, M.: Increased bone formation in mice lacking apolipoprotein E. J. Bone Miner. Res. 20:274-282,2005 https://doi.org/10.1359/JBMR.041101
  36. Schmid, C., Ghirlanda-Keller, C., and Gosteli-Peter, M.: Ascorbic acid decreases neutral endopeptidase activity in cultured osteoblastic cells. Regul. Pept. 130:57-66,2005 https://doi.org/10.1016/j.regpep.2005.03.007
  37. Shin, M.M., Kim, Y.H., Kim, S.N., Kim, G.S., and Baek, J,H.: High extracellular $Ca^{2+}$ alone stimulates osteoclast formation but inhibits in the presence of other osteoclastogenic factors. Exp. Mol. Med. 35:167-174, 2003 https://doi.org/10.1038/emm.2003.23
  38. Stains, J.P., Weber, J.A., and Gay, C.V.: Expression of Na(+)/Ca(2+) exchanger isoforms (NCX1 and NCX3) and plasma membrane Ca(2+) ATPase during osteoblast differentiation. J. Cell. Biochem. 84:625-635, 2002 https://doi.org/10.1002/jcb.10050
  39. Suda, M., Tanaka, K., Fukushima, M., Natsui, K., Yasoda, A., Komatsu, Y., Ogawa, Y., Itoh, H., and Nakao, K.: C'Type Natriuretic peptide as an autocrine/paracrine regulator of osteoblast. Biochem. Biophys. Res. Commun. 223:1-6,1996 https://doi.org/10.1006/bbrc.1996.0836
  40. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., and Martin, T.J.: Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20:345357, 1999 https://doi.org/10.1210/er.20.3.345
  41. Sugimoto, T., Kanatani, M., Kano, J. Kaji, H., Tsukamoto, T., Yamaguchi, T., Fukase, M., and Chihara, K.: Effects of high calcium concentration on the functions and interactions of osteoblastic cells and monocytes and on the formation of osteoclast-like cells. J. Bone Miner. Res. 8:1445-1452, 1993 https://doi.org/10.1002/jbmr.5650081206
  42. Takami, M., Takahashi, N., Udagawa, N., Miyaura, C., Suda, K., Woo, J.T., Martin, T.J., Nagai, K., and Suda, T.: Intracellular calcium and protein kinase C mediate expression of receptor activator of nuclear factor-$\kappa$B ligand and osteoprotegerin in osteoblasts. Endocrinology 141:47114719, 2000 https://doi.org/10.1210/en.141.12.4711
  43. Tanji, K., Mori, F., Imaizumi, T., Yoshida, H., Matsumiya, T., Tamo, W., Yoshimoto, M., Odagiri, H., Sasaki, M., Takahashi, H., Satoh, K., and Wakabayashi, K.: Upregulation of $\alpha$-synuclein by lipopolysaccharide and interleukin-l in human macrophages. Pathol. Int. 52:572-527, 2002 https://doi.org/10.1046/j.1440-1827.2002.01385.x
  44. Thapa, N, Kang K, and Kim I.: ,$\beta$ig-h3 mediates osteoblast adhesion and inhibits differentiation. Bone 36:232-242, 2005 https://doi.org/10.1016/j.bone.2004.08.007
  45. Tsai, J.A., Bucht, E., Torring, O., and Kindmark, H.: Extracellular calcium increases free cytoplasmic calcium and DNA synthesis in human osteoblasts. Horm. Metab. Res. 6:22-26, 2004
  46. Uzawa, K., Grzesik, W.J., Nishiura, T., Kuznetsov, S.A., Robey, P.G., Brenner, D.A., and Yamauchi, M.: Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J. Bone Miner. Res. 14:1272-1280,1999 https://doi.org/10.1359/jbmr.1999.14.8.1272
  47. Valverde, P., Kawai, T., and Taubman, M.A.: Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J. Bone Miner. Res. 19:155-164, 2004 https://doi.org/10.1359/JBMR.0301213
  48. Viereck, V., Siggelkow, H., Tauber, S., Raddatz, D., Schutze, N., and Hufner, M.: Differential regulation of Cbfal/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts. J. Cell. Biochem. 86:348-356, 2002 https://doi.org/10.1002/jcb.10220
  49. Whyte, M.P., Chines, A., Silva, D.P. Jr., Landt, Y., and Ladenson, J.H.: Creatine kinase brain isoenzyme (BB-CK) presence in serum distinguishes osteopetroses among the sclerosing bone disorders. J. Bone Miner. Res. 11:14381443,1996 https://doi.org/10.1002/jbmr.5650111010
  50. Yamaguchi, T., Kifor, O., Chattopadhyay, N., and Brown, E.M.: Expression of extracellular calcium($Ca^{2+}$o )-sensing receptor in the clonal osteoblast-like cell lines, UMR-106 and SAOS-2. Biochem. Biophys. Res. Commun. 243:753757,1998 https://doi.org/10.1006/bbrc.1998.8178
  51. Yamauchi, M., Yamaguchi, T., Kaji, H., Sugimoto, T., and Chihara, K.: Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am. J. Physiol. Endocrinol. Metab. 288:E608-E616, 2005
  52. Yanaka, N., Akatsuka, H., Kawai, E., and Omori, K.: 1,25Dihydroxyvitamin D3 upregulates natriuretic peptide receptor-C expression in mouse osteoblasts. Am. J. Physiol. 275:E965-E973, 1998
  53. Yoshikawa, H., Taniguchi, S.I., Yamamura, H., Mori, S., Sugimoto, M., Miyado, K., Nakamura, K., Nakao, K., Katsuki, M., Shibata, N., and Takahashi, K.: Mice lacking smooth muscle calponin display increased bone formation that is associated with enhancement of bone morphogenetic protein responses. Genes Cells 3:685-695, 1998 https://doi.org/10.1046/j.1365-2443.1998.00214.x
  54. Yu, X., Huang, Y., Collin-Osdoby, P., and Osdoby, P.: CCR1 chemokines promote the chemotactic recruitment, RANKL development, and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts. J. Bone. Miner Res. 19:2065-2077, 2004 https://doi.org/10.1359/JBMR.040910
  55. Zhao, H., Laitala-Leinonen, T., Parikka, V., and Vaananen, H.K.: Downregulation of small GTPase Rab7 impairs osteoclast polarization and bone resorption. J. Biol, Chem. 276:39295-39302, 2001 https://doi.org/10.1074/jbc.M010999200