Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.201

Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs)  

Nam, Sorim (Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University)
Lee, Aram (Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University)
Lim, Jihyun (Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University)
Lim, Jong-Seok (Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University)
Publication Information
Biomolecules & Therapeutics / v.27, no.1, 2019 , pp. 63-70 More about this Journal
Abstract
Myeloid-derived suppressor cells (MDSCs) that are able to suppress T cell function are a heterogeneous cell population frequently observed in cancer, infection, and autoimmune disease. Immune checkpoint molecules, such as programmed death 1 (PD-1) expressed on T cells and its ligand (PD-L1) expressed on tumor cells or antigen-presenting cells, have received extensive attention in the past decade due to the dramatic effects of their inhibitors in patients with various types of cancer. In the present study, we investigated the expression of PD-1 on MDSCs in bone marrow, spleen, and tumor tissue derived from breast tumor-bearing mice. Our studies demonstrate that PD-1 expression is markedly increased in tumor-infiltrating MDSCs compared to expression in bone marrow and spleens and that it can be induced by LPS that is able to mediate $NF-{\kappa}B$ signaling. Moreover, expression of PD-L1 and CD80 on $PD-1^+$ MDSCs was higher than on $PD-1^-$ MDSCs and proliferation of MDSCs in a tumor microenvironment was more strongly induced in $PD-1^+$ MDSCs than in $PD-1^-$ MDSCs. Although we could not characterize the inducer of PD-1 expression derived from cancer cells, our findings indicate that the study on the mechanism of PD-1 induction in MDSCs is important and necessary for the control of MDSC activity; our results suggest that $PD-1^+$ MDSCs in a tumor microenvironment may induce tumor development and relapse through the modulation of their proliferation and suppressive molecules.
Keywords
Myeloid-derived suppressor cells; PD-1; PD-L1/L2; Bone marrow cells; Tumor cell-conditioned medium; $NF-{\kappa}B$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jiang, M., Chen, J., Zhang, W., Zhang, R., Ye, Y., Liu, P., Yu, W., Wei, F., Ren, X. and Yu, J. (2017) Interleukin-6 trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front. Immunol. 8, 1840.   DOI
2 Karyampudi, L., Lamichhane, P., Krempski, J., Kalli, K. R., Behrens, M. D., Vargas, D. M., Hartmann, L. C., Janco, J. M., Dong, H., Hedin, K. E., Dietz, A. B., Goode, E. L. and Knutson, K. L. (2016) PD-1 Blunts the Function of Ovarian Tumor-Infiltrating Dendritic Cells by Inactivating NF-kappaB. Cancer Res. 76, 239-250.   DOI
3 Kumar, V., Patel, S., Tcyganov, E. and Gabrilovich, D. I. (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208-220.   DOI
4 Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. and Hermoso, M. A. (2014) Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 149185.   DOI
5 Leung, J. and Suh, W. K. (2014) The CD28-B7 family in anti-tumor immunity: emerging concepts in cancer immunotherapy. Immune Netw. 14, 265-276.   DOI
6 Lewis, A. M., Varghese, S., Xu, H. and Alexander, H. R. (2006) Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J. Transl. Med. 4, 48.   DOI
7 Liu, Y., Yu, Y., Yang, S., Zeng, B., Zhang, Z., Jiao, G., Zhang, Y., Cai, L. and Yang, R. (2009) Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells. Cancer Immunol. Immunother. 58, 687-697.   DOI
8 Nam, S., Kang, K., Cha, J. S., Kim, J. W., Lee, H. G., Kim, Y., Yang, Y., Lee, M. S. and Lim, J. S. (2016) Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J. Leukoc. Biol. 100, 1273-1284.   DOI
9 Robertson, S. E., Young, J. D., Kitson, S., Pitt, A., Evans, J., Roes, J., Karaoglu, D., Santora, L., Ghayur, T., Liew, F. Y., Gracie, J. A. and McInnes, I. B. (2006) Expression and alternative processing of IL-18 in human neutrophils. Eur. J. Immunol. 36, 722-731.   DOI
10 Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V. and Kiessling, R. (2010) Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 70, 4335-4345.   DOI
11 Said, E. A., Dupuy, F. P., Trautmann, L., Zhang, Y., Shi, Y., El-Far, M., Hill, B. J., Noto, A., Ancuta, P., Peretz, Y., Fonseca, S. G., Van Grevenynghe, J., Boulassel, M. R., Bruneau, J., Shoukry, N. H., Routy, J. P., Douek, D. C., Haddad, E. K. and Sekaly, R. P. (2010) Programmed death-1-induced interleukin-10 production by monocytes impairs $CD4^+$ T cell activation during HIV infection. Nat. Med. 16, 452-459.   DOI
12 Shin, J. and Jin, M. (2017) Potential immunotherapeutics for immunosuppression in sepsis. Biomol. Ther. (Seoul) 25, 569-577.   DOI
13 Sinha, P., Okoro, C., Foell, D., Freeze, H. H., Ostrand-Rosenberg, S. and Srikrishna, G. (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 181, 4666-4675.   DOI
14 Terme, M., Ullrich, E., Aymeric, L., Meinhardt, K., Desbois, M., Delahaye, N., Viaud, S., Ryffel, B., Yagita, H., Kaplanski, G., Prevost-Blondel, A., Kato, M., Schultze, J. L., Tartour, E., Kroemer, G., Chaput, N. and Zitvogel, L. (2011) IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 71, 5393-5399.   DOI
15 Trikha, P. and Carson, W. E., 3rd (2014) Signaling pathways involved in MDSC regulation. Biochim. Biophys. Acta 1846, 55-65.
16 Condamine, T. and Gabrilovich, D. I. (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32, 19-25.   DOI
17 Ahmadzadeh, M., Johnson, L. A., Heemskerk, B., Wunderlich, J. R., Dudley, M. E., White, D. E. and Rosenberg, S. A. (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537-1544.   DOI
18 Bai, J., Gao, Z., Li, X., Dong, L., Han, W. and Nie, J. (2017) Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget 8, 110693-110707.   DOI
19 Bally, A. P., Lu, P., Tang, Y., Austin, J. W., Scharer, C. D., Ahmed, R. and Boss, J. M. (2015) NF-kappaB regulates PD-1 expression in macrophages. J. Immunol. 194, 4545-4554.   DOI
20 Daud, A. I., Loo, K., Pauli, M. L., Sanchez-Rodriguez, R., Sandoval, P. M., Taravati, K., Tsai, K., Nosrati, A., Nardo, L., Alvarado, M. D., Algazi, A. P., Pampaloni, M. H., Lobach, I. V., Hwang, J., Pierce, R. H., Gratz, I. K., Krummel, M. F. and Rosenblum, M. D. (2016) Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Invest. 126, 3447-3452.   DOI
21 Yang, L. and Zhang, Y. (2017) Tumor-associated macrophages: from basic research to clinical application. J. Hematol. Oncol. 10, 58.   DOI
22 Tu, S., Bhagat, G., Cui, G., Takaishi, S., Kurt-Jones, E. A., Rickman, B., Betz, K. S., Penz-Oesterreicher, M., Bjorkdahl, O., Fox, J. G. and Wang, T. C. (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408-419.   DOI
23 Umansky, V., Blattner, C., Gebhardt, C. and Utikal, J. (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4, E36.   DOI
24 Yamazaki, T., Akiba, H., Iwai, H., Matsuda, H., Aoki, M., Tanno, Y., Shin, T., Tsuchiya, H., Pardoll, D. M., Okumura, K., Azuma, M. and Yagita, H. (2002) Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol. 169, 5538-5545.   DOI
25 Yang, R., Cai, Z., Zhang, Y., Yutzy, W. H. t., Roby, K. F. and Roden, R. B. (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated $Gr-1^+CD11b^+$ myeloid cells. Cancer Res. 66, 6807-6815.   DOI
26 Yao, S., Wang, S., Zhu, Y., Luo, L., Zhu, G., Flies, S., Xu, H., Ruff, W., Broadwater, M., Choi, I. H., Tamada, K. and Chen, L. (2009) PD-1 on dendritic cells impedes innate immunity against bacterial infection. Blood 113, 5811-5818.   DOI
27 Zamani, M. R., Aslani, S., Salmaninejad, A., Javan, M. R. and Rezaei, N. (2016) PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol. 310, 27-41.   DOI
28 Fabbi, M., Carbotti, G. and Ferrini, S. (2015) Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J. Leukoc. Biol. 97, 665-675.   DOI
29 Zhang, Y., Zhou, Y., Lou, J., Li, J., Bo, L., Zhu, K., Wan, X., Deng, X. and Cai, Z. (2010) PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit. Care 14, R220.   DOI
30 Draghiciu, O., Lubbers, J., Nijman, H. W. and Daemen, T. (2015) Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4, e954829.   DOI
31 Gabrilovich, D. I., Ostrand-Rosenberg, S. and Bronte, V. (2012) Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253-268.   DOI
32 Gordon, S. R., Maute, R. L., Dulken, B. W., Hutter, G., George, B. M., McCracken, M. N., Gupta, R., Tsai, J. M., Sinha, R., Corey, D., Ring, A. M., Connolly, A. J. and Weissman, I. L. (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495-499.   DOI
33 Hoesel, B. and Schmid, J. A. (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer 12, 86.   DOI
34 Hu, X., Li, B., Li, X., Zhao, X., Wan, L., Lin, G., Yu, M., Wang, J., Jiang, X., Feng, W., Qin, Z., Yin, B. and Li, Z. (2014) Transmembrane TNF-alpha promotes suppressive activities of myeloid-derived suppressor cells via TNFR2. J. Immunol. 192, 1320-1331.   DOI
35 Huang, B., Lei, Z., Zhao, J., Gong, W., Liu, J., Chen, Z., Liu, Y., Li, D., Yuan, Y., Zhang, G. M. and Feng, Z. H. (2007) CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett. 252, 86-92.   DOI
36 Huang, A., Zhang, B., Yan, W., Wang, B., Wei, H., Zhang, F., Wu, L., Fan, K. and Guo, Y. (2014) Myeloid-derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1-induced IL-10. J. Immunol. 193, 5461-5469.   DOI