PLLA/HA Composite Scaffold와 골수 줄기세포를 이용한 조직공학적 골재생에 대한 연구

BONE TISSUE ENGINEERING USING PLLA/HA COMPOSITE SCAFFOLD AND BONE MARROW MESENCHYMAL STEM CELL

  • 김병렬 (고려대학교 의과대학 치과, 구강악안면외과학교실) ;
  • 장현석 (고려대학교 의과대학 치과, 구강악안면외과학교실) ;
  • 임재석 (고려대학교 의과대학 치과, 구강악안면외과학교실) ;
  • 이의석 (고려대학교 의과대학 치과, 구강악안면외과학교실) ;
  • 김동현 (고려대학교 의과대학 치과, 구강악안면외과학교실)
  • Kim, Byeong-Yol (Department of Oral & Maxillofacial Surgery, School of Medicine, Korea University) ;
  • Jang, Hyon-Seok (Department of Oral & Maxillofacial Surgery, School of Medicine, Korea University) ;
  • Rim, Jae-Suk (Department of Oral & Maxillofacial Surgery, School of Medicine, Korea University) ;
  • Lee, Eui-Seok (Department of Oral & Maxillofacial Surgery, School of Medicine, Korea University) ;
  • Kim, Dong-Hyun (Department of Oral & Maxillofacial Surgery, School of Medicine, Korea University)
  • 발행 : 2008.07.31

초록

Aim of the study: Scaffolds are crucial to tissue engineering/regeneration. Biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. In this study, poly(L-lactide)/hydroxyapatite(PLLA/HA) composite scaffolds were fabricated for in vivo bone tissue engineering. Material & methods: In this study, PLLA/HA composite microspheres were prepared by double emulsion-solvent evaporation method, and were evaluated in vivo bone tissue engineering. Bone marrow mesenchymal stem cell from rat iliac crest was differentiated to osteoblast by adding osteogenic medium, and was mixed with PLLA/HA composite scaffold in fibrin gel and was injected immediately into rat cranial bone critical size defect(CSD:8mm in diameter). At 1. 2, 4, 8 weeks after implantation, histological analysis by H-E staining, histomorphometric analysis and radiolographic analysis were done. Results: BMP-2 loaded PLLA/HA composite scaffolds in fibrin gel delivered with osteoblasts differentiated from bone marrow mesenchymal stem cells showed rapid and much more bone regeneration in rat cranial bone defects than control group. Conclusion: This results suggest the feasibility and usefulness of this type of scaffold in bone tissue engineering.

키워드

참고문헌

  1. Li Z, Yubao L, Aiping Y et al : Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J Mater Sci Mater Med 16 : 213, 2005 https://doi.org/10.1007/s10856-005-6682-3
  2. Okamoto M, Dohi Y, Ohgushi H et al : Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells. J Mater Sci Mater Med 17 : 327, 2006 https://doi.org/10.1007/s10856-006-8232-z
  3. Linhart W, Peters F, Lehmann W et al : Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 54 : 162, 2001 https://doi.org/10.1002/1097-4636(200102)54:2<162::AID-JBM2>3.0.CO;2-3
  4. Young CS, Abukawa H, Asrican R et al : Tissue-engineered hybrid tooth and bone. Tissue Eng 11 : 1599, 2005 https://doi.org/10.1089/ten.2005.11.1599
  5. Jung Y, Kim SS, Kim YH et al : A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials 26 : 6314, 2005 https://doi.org/10.1016/j.biomaterials.2005.04.007
  6. Montjovent MO, Mathieu L, Hinz B et al : Biocompatibility of bioresorbable poly(L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Eng 11 : 1640, 2005 https://doi.org/10.1089/ten.2005.11.1640
  7. Rohner D, Hutmacher DW, Cheng TK et al : In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. J Biomed Mater Res B Appl Biomater 15;66 : 574, 2003
  8. Williams JM, Adewunmi A, Schek RM et al : Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26 : 4817, 2005 https://doi.org/10.1016/j.biomaterials.2004.11.057
  9. Iejima D, Saito T, Uemura T : A collagen-phosphophoryn sponge as a scaffold for bone tissue engineering. J Biomater Sci Polym Ed 14 : 1097, 2003 https://doi.org/10.1163/156856203769231583
  10. Domaschke H, Gelinsky M, Burmeister B et al : In vitro ossification and remodeling of mineralized collagen I scaffolds. Tissue Eng 12 : 949, 2006 https://doi.org/10.1089/ten.2006.12.949
  11. Li Z, Ramay HR, Hauch KD et al : Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26 : 3919, 2005 https://doi.org/10.1016/j.biomaterials.2004.09.062
  12. Abbah SA, Lu WW, Chan D et al : In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute. Biochem Biophys Res Commun 18;347 : 185, 2006
  13. Fujibayashi S, Neo M, Kim HM et al : A comparative study between in vivo bone ingrowth and in vitro, apatite formation on $Na_2O-CaO-SiO_2$ glasses Biomaterials 24 : 1349, 2003 https://doi.org/10.1016/S0142-9612(02)00511-2
  14. Tanahashi M, Yao T, Kokubo T et al : Apatite coating on organic polymers by a biomimetic process Am Ceram Soc 77 : 2805, 1994 https://doi.org/10.1111/j.1151-2916.1994.tb04508.x
  15. Tananhashi M, Yao T, Kokubo T et al : Apatite coated on organic polymers by biomimetic process: improvement in its adhesion to substrate by glow-discharge treatment J Biomed Mater Res 29 : 349, 1995 https://doi.org/10.1002/jbm.820290310
  16. Somasundaran P, Markovic B : Interfacial properties of calcium phosphate in biological and industrial system, Switzerland, Tran Tech Pub, 1998, p.85
  17. Chun KW, Yoo HS, Yoon JJ et al : Biodegradable PLGA microcarries for injectable delivery of chondrocytes: Effect of surface modification on cell attachment and function Biotechnol Prog 20 : 1797, 2004 https://doi.org/10.1021/bp0496981
  18. Cho ER, Kang SW, Kim BS : Poly(lactic-co-glycolic acid) microspheres as a potential bulking agent for urological injection therapy: Preliminary results J Biomed Mater Res Part B Appl Biomater 72B 166, 2005 https://doi.org/10.1002/jbm.b.30138
  19. Kershen RT, Atala A : New advances in injectable therapies for the treatment of incontinence and vesicoureteral reflex Urol Clin North Am 26 : 81, 1999 https://doi.org/10.1016/S0094-0143(99)80008-1
  20. Morhenn VB, Lemperle G, Gallo RL : Phagocytosis of different particulate dermal filler substances by human macrophages and skin cells Dermatol Surg 28 : 484, 2002 https://doi.org/10.1046/j.1524-4725.2002.01273.x
  21. Boix D, Gauthier O, Guicheux J et al : Alveolar bone regeneration for immediate implant placement using an injectable bone substitute: An experimental study in dogs J Periodontol 75 : 663, 2004 https://doi.org/10.1902/jop.2004.75.5.663
  22. Ito K, Yamada Y, Nagasaka T et al : Osteogenic potential of injectable tissue-engineered bone: A comparison among autogenous bone, bone substitute (Bio-oss), platelet-rich plasma, and tissue-engineered bone with respect to their mechanical properties and histological findings J Biomed Mater Res 73A : 63, 2005 https://doi.org/10.1002/jbm.a.30248
  23. Murphy WL, Kohn DH, Mooney DJ : Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro J Biomed Mater Res 50 : 50, 2000 https://doi.org/10.1002/(SICI)1097-4636(200004)50:1<50::AID-JBM8>3.0.CO;2-F
  24. Helen LH, Pollak SR, Ducheyene P : 45S5 bioactive glass surface charge variations and the formation of a surface calcium phosphate layer in a solution containing fibronectin J Biomed Mater Res 54 : 454, 2001 https://doi.org/10.1002/1097-4636(20010305)54:3<454::AID-JBM200>3.0.CO;2-H
  25. Kokubo T, Himeno T, Kim HM et al : Process of bone like apatite formation on sintered hydroxyapatite in serum-containing protein Bioceramics, Switzerland, Tran Tech Pub, 2003, vol 16 p.139
  26. Peter SJ, Miller MJ, Yasko AW et al : Polymer concepts in tissue engineering J Biomed Mater Res (Appl Biomater) 43 : 422, 1998 https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<422::AID-JBM9>3.0.CO;2-1
  27. Martin C, Winet H, Bao JY : Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chabmbers Biomaterials 17 : 2373, 1996 https://doi.org/10.1016/S0142-9612(96)00075-0
  28. Zhu G, Mallery SR, Schwendeman SP : Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide) Nat Biotechnol 18 : 52, 2000 https://doi.org/10.1038/71916
  29. Nagano M, Kitsugi T, Nakamura T et al : Bone bonding ability of an apatite-coated polymer produced using a biomimetic method: a mechanical and histological study in vivo J Biomed Mater Res 31 : 487, 1996 https://doi.org/10.1002/(SICI)1097-4636(199608)31:4<487::AID-JBM8>3.0.CO;2-H
  30. Yan WQ, Nakamura T, Kawanabe K et al : Apatite layer-coated titanium for use as bone bonding implants Biomaterials 18 : 1185, 1997 https://doi.org/10.1016/S0142-9612(97)00057-4
  31. Li P : Biomimetic nano-apatite coating capable of promoting bone ingrowth J Biomed Mater Res 66A : 79, 2003 https://doi.org/10.1002/jbm.a.10519
  32. Barrere F, van der Valk CM, Meijer G et al : Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats J Biomed Mater Res 67B : 655, 2003 https://doi.org/10.1002/jbm.b.10057
  33. Gundle R, Joyner CJ, Triffitt JT : Human bone tssue formation in diffusion chamber culture in vivo by bonederived cells and marrow stromal fibroblastic cells Bone 16 : 597, 1995 https://doi.org/10.1016/8756-3282(95)00112-Q
  34. Krebsbach PH, Mankani MH, Satomura K et al : Repair of craniotomy defects using bone marrow stromal cells Transplantation 66 : 1272, 1998 https://doi.org/10.1097/00007890-199811270-00002
  35. Krebsbach PH, Kuznetsov SA, Bianco P et al : Bone marrow stromal cells: characterization and clinical application Crit Rev Oral Biol Med 10 : 165, 1999 https://doi.org/10.1177/10454411990100020401
  36. Martin I, Muraglia A, Campanile G et al : Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow Endocrinology 138 : 4456, 1997 https://doi.org/10.1210/en.138.10.4456
  37. Haynesworth SE, Goshima J, Goldberg VM et al : Characterization of cells with osteogenic potential from human marrow Bone 13 : 81, 1992 https://doi.org/10.1016/8756-3282(92)90364-3
  38. Ohgushi H, Okumura M, Tamai S et al : Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative hnistomorphometric study of ectopic bone formation J Biomed Mater Res 24 :1563, 1990 https://doi.org/10.1002/jbm.820241202
  39. Krebsbach PH, Kuznetsov SA, Satomura K et al : Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts Transplantation 63 : 1059, 1997 https://doi.org/10.1097/00007890-199704270-00003
  40. Petite H, Viateau V, Bensaid W et al : tissue-engineered bone regeneration Nat Biotechnol 18 : 959, 2000 https://doi.org/10.1038/79449
  41. Murphy WL, Simmons CA, Kaigler D et al : Bone regeneration via biomineral presentation and induced angiogenesis J Dental Res 83 : 204, 2004 https://doi.org/10.1177/154405910408300304
  42. Oreffo RO, Driessens FC, Planell JA et al : Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements Biomaterials 19 : 1845, 1998 https://doi.org/10.1016/S0142-9612(98)00084-2
  43. Oreffo RO, Driessens FC, Planell JA et al : Effects of novel calcium phosphate cements on human bone marrow fibroblastic cells Tissue Eng 4 : 293, 1998 https://doi.org/10.1089/ten.1998.4.293
  44. Deligianni DD, Katsala ND, Koutsoukos PG et al : Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength Biomaterials 22 : 87, 2001 https://doi.org/10.1016/S0142-9612(00)00174-5
  45. Handschel J, Wiesmann HP, Stratmann U et al : TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model Biomaterials 23 : 1689, 2003 https://doi.org/10.1016/S0142-9612(01)00296-4
  46. Murphy WL, Hsiong S, RichardsonTP et al : Effects of a bone-like mineral film on phenotype of adult human mesenchymal stem cells in vitro Biomaterials 26 : 303, 2005 https://doi.org/10.1016/j.biomaterials.2004.02.034
  47. Boyan BD, Lohmann CH, Somers A et al : Potential of porous poly-D,L-lactide-co-glycolide particles as a carrier for recombinant human bone morphogenetic protein-2 during osteoinduction in vivo J Biomed Mater Res 46 : 51, 1999 https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<51::AID-JBM6>3.0.CO;2-I
  48. Urist MR : Bone formation by autoinduction. Science 150 : 893, 1965 https://doi.org/10.1126/science.150.3698.893
  49. Lieberman JR, Le LQ, Wu L et al : Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res 16 : 330, 1998 https://doi.org/10.1002/jor.1100160309
  50. Yamashita H, ten Dijke P, Huylebroeck D et al : Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J Cell Biol 130 : 217, 1995 https://doi.org/10.1083/jcb.130.1.217
  51. Wikesjo UM, Sigurdsson TJ, Lee MB et al : Dynamics of wound healing in periodontal regenerative therapy. J Calif Dent Assoc 23 : 30, 1995
  52. Gerhart TN, Kirker-Head CA, Kriz MJ et al : Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop Relat Res (293) : 317, 1993
  53. Origuchi N, Ishidou Y, Nagamine T et al : The spatial and temporal immunolocalization of TGF-beta 1 and bone morphogenetic protein-2/-4 in phallic bone formation in inbred Sprague Dawley male rats. In Vivo 12 : 473, 1998
  54. Isobe M, Yamazaki Y, Mori M et al : The role of recombinant human bone morphogenetic protein-2 in PLGA capsules at an extraskeletal site of the rat. J Biomed Mater Res 45 : 36, 1999 https://doi.org/10.1002/(SICI)1097-4636(199904)45:1<36::AID-JBM5>3.0.CO;2-I
  55. Boyne PJ ; Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects. J Bone Joint Surg Am 83-A Suppl 1(Pt 2) : S146, 2001
  56. Khan SN, Lane JM : The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in orthopaedic applications. Expert Opin Biol Ther 4 : 741, 2004 https://doi.org/10.1517/14712598.4.5.741
  57. Friedenstein A, Kuralesova AI : Osteogenic precursor cells of bone marrow in radiation chimeras. Transplantation 12 : 99, 1971 https://doi.org/10.1097/00007890-197108000-00001