• Title/Summary/Keyword: Bone implant interface

Search Result 152, Processing Time 0.029 seconds

The effects of calcium aluminate cement according to particle sizes on calvarial bone defects in rats (백서 두개골 결손부에서 입자 크기에 따른 Calcium aluminate cement의 효과)

  • Shin, Jung-A;Yun, Jeong-Ho;Oh, Seung-Han;Paik, Jeong-Won;Choi, Se-Young;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.769-779
    • /
    • 2002
  • This present study was carried out to find the effects of calcium aluminate cement($CaO\;{\cdot}\;Al_2O_3$, CAC), which has been developed with bio-compatibility and mechanical properties, in biological environments. Two different particle sizes of CAC - 3.5${\mu}m$ vs. 212${\sim}$250${\mu}m$ which is recommended in periodontal bone grafting procedures-were filled in 8mm calvarial defect in Sprague-Dawley rat. The specimens were examined histologically, especially the bone-cement interface and the response of surrounding tissues. The results are as follows; 1. In the control group, inflammatory cells were observed at 2 weeks. At 8 weeks, periosteum and dura mater were continuously joined together in the defect areas. But in the center of defect area were filled up with the loose connective tissues. 2. In the experimental group l($212{\mu}m{\sim}250{\mu}m$ particle), immature bone was formed and outermost layer was surrounded by osteoid layer at 2 weeks. Osteoblasts were arranged between immature bone and osteoid layer. And, osteoid layer was remained until 8 weeks after surgery. 3. In the experimental group 2, periosteum and dura mater lost its continuity at 2 weeks. Scattering of CAC particles and infiltration of inflammatory cells were observed, which this findings deepened at 8 weeks. The result of this study shows that when calvarial defects in white rats are filled with calcium aluminate cement of 212${\sim}$250${\mu}m$, the materials are to be bio-compatible in growth and healing on surrounding tissues. When further researches are fulfilled, such as direct bone adhesion and bone regeneration ability, it's possible that CAC could be applied to various periodontology fields in the future.

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS ACCORDING TO IMPLANT THREAD DESIGN UNDER THE AXIAL LOAD (수직력하에서 임프란트 나사형태에 따른 응력의 3차원 유한요소법적 분석)

  • Kim, Woo-Taek;Cha, Yong-Doo;Oh, Se-Jong;Park, Sang-Soo;Kim, Hyun-Woo;Park, Yang-Ho;Park, Jun-Woo;Rhee, Gun-Joo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.2
    • /
    • pp.111-117
    • /
    • 2001
  • There are three designs of thread form in screw type implants: V-thread, Reverse buttress thread and Square thread. The purpose of this study was to find out how thread form designs have an influence on the equivalent stress, equivalent strain, maximum shear stress and maximum shear strain and which design of thread form generates more maximum equivalent stress and strain. 3-D finite element analysis was used to evaluate the stress and strain patterns of three tread types. The results of this study were as follow. 1. Under the 200N of axial load, the value of maximum equivalent stress is smallest in square thread and there is no significant difference between that of V thread and reverse buttress thread. 2. Under the 200N of axial load, the value of maximum equivalent strain is largest in V thread and smallest in square thread. 3. Under the 200N of axial load, the value of maximum shear stress is smallest in square thread and there is no significant difference between that of V thread and reverse buttress thread. 4. Under the 200N of axial load, the value of maximum equivalent strain is largest in V thread and there is no significant difference between that of square thread and reverse buttress thread. 5. Above results show that the square thread has special advantages in stress and strain compared with other thread types, especially in shear stess which is most determinant to implant-bone interface. Considering the superior biomechanical properties of square form implant, we presume that square form implant has better clinical results than the other types of implants in the same clinical conditions.

  • PDF

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

The Study on the Physical Property of Provisional Prosthesis using Modified Temporary Abutment (변형된 임플란트 임시 지대주의 물성에 대한 연구)

  • Yang, Byung-Duk;Yoon, Tae-Ho;Choi, Un-Jae;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.329-340
    • /
    • 2006
  • Statement of problem: Damping of the peak force transmitted to implants has been reported by in vitro studies using impact forces on resin-veneered superstructures. Theoretical assumptions suggest that use of acrylic resin for the occlusal surfaces of a prosthesis would protect the connection between implant and bone. Therefore, the relationship between prosthesis materials and the force transmitted through the implant system also needs to be investigated under conditions that resemble the intraoral mechanical environment. Purpose: The purpose of this study was to analyze the fracture strength and modes of temporary prosthesis when a flange or occlusally extended structure were connected on the top of the abutment. Material and method: Modified abutments of winged and bulk design were made by casting the desired wax pattern which is made on the UCLA type plastic cylinder. Temporary crowns were made using templates on the modified abutments, and its fracture toughness and strain were compared to the traditional temporary prosthesis. To evaluate the effect of aging, 5.000 times of thermocycling were performed, and their result was compared to the 24hours specimen result. Results: The following conclusions were drawn from this study: 1. In the fracture toughness test, temporary crown's fracture line located next to the screw hole while modified designs with metal support showed fracture line on the metal and its propagation along the metal-resin interface. 2. Wing and bulk structure didn't show significant difference in the fracture toughness (p>0.05), but wing structure showed stress concentration on the screw hole area compared to bulk structure which showed even stress distribution. 3. In the fracture toughness test after thermocycling, wing and bulk structure showed increased or similar results in metal supported area while off-metal area and temporary crown showed decreased results. 4. In the strain measurement after thermocycling, its value increased in the temporary and bulk structure. However, wing structure showed decreased value in the loading point while increased value in the screw hole area. Conclusion: Wing type design showed compatible result to the bulk type that its application with composite resin prosthesis to the implant dentistry is considered promising.

Radiologic Evaluation of Limb Salvage Operation with Tumor Prosthesis (종양 대치물을 이용한 사지 구제술의 방사선학적 평가)

  • Moon, Sang-Ho;Lee, Sang-Hoon;Kim, Han-Soo;Oh, Joo-Han;Ko, Byung-Won;Koo, Ki-Hyung;Lee, Jae-Hag;Hwang, Chung-Soo;Lee, Han-Koo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.6 no.4
    • /
    • pp.152-162
    • /
    • 2000
  • Purpose : To verify radiological changes of limb salvage operation using tumor prosthesis. Materials and Methods : Sixty-nine cases which used tumor prosthesis were reviewed. They have been followed up for average four years and nine months. We evaluated radiographs by ISOLS(International Symposium On Limb Salvage) radiological implants evaluation system immediate postoperatively, at postoperative 1 year and last follow-up. After converting 'excellent, good, fair, poor' to '4, 3, 2, 1' for stastical analysis, data were analyzed according to the use of cement, anatomical sites, diagnosis implant designs and age (<20 year vs. ${\geq}$20 year) using t-test and ANOVA. Results : The outcomes of cemented type prostheses were superior in remodelling and interface but inferior in anchorage. The scores of proximal femur and distal tibia were worse in bone remodelling. Osteosarcoma group had lower scores in anchorage and implant articular problem. There were no significant differences according to four different implant designs and age. Conclusion : In the intermediate term follow-up radiological evaluation, cemented type prosthesis were better in the aspects of bony resorption and osteolysis, and cementless one in anchorage. Distal femur and proximal tibia have higher scores in bony resorption, and osteosarcoma was worse tumor entity in anchorage and articular problem, and chemotherapy may be the cause.

  • PDF

Biological Effects Of Flurbiprofen Loaded Chitosan To Gingival Fibroblast (Flurbiprofen 함유 키토산 제제가 치은 섬유아세포에 미치는 영향)

  • Chung, Chong-Pyoung;Park, Yoon-Jeong;Lee, Seung-Jin;Rhyu, In-Cheol;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.317-333
    • /
    • 1996
  • The main goal of periodontal regeneration is to be achieved by epithelial exclusion, periodontal ligament cell activation or alveolar bone regeneration. The purpose of this study was to investigate on the physico- chemical and biological characteristics of biodegradable chitosan beads. Chitosan beads were fabricated by ionic gelation with sodium tripolyphosphate and they had the size in 300um diameter. As therapeutic agent, flurbiprofen was incorporated into the beads by 10, 20% loading contents. The release of drugs from the chitosan beads was measured in vitro. Also, biological activity tests of flurbiprofen loaded chitosan beads including cytotoxicity test, ihhibition of $IL-1{\beta}$ production, suppression to $PGE_2$ production, collagenase inhibition test, the ability of total protein synthesis, and tissue response were evaluated. The amount of flurbiprofen released from chitosan was 33-50% during 7 days. Minimal cytotoxicity was observed in chitosan beads. Flurbiprofen released from chitosan beads significantly suppressed the $IL-1{\beta}$ production of monocyte, $PGE_2$ production and markedly inhibited collagenase activity. Meanwhile, flurbiprofen released from this system showed increased ability for protein synthesis. Throughout 4 -week implantation period, no significant inflammatory cell infiltrated around chitosan bead and also fibroblast like cell types at the beads - tissue interface were revealed with gradual degradation of implanted chitosan beads. From these results, it was suggested that flurbiprofen loaded chitosan beads can be effectively useful for biocompatible local delivery system in periodontal regeneration.

  • PDF

Concept and application of implant connection systems: Part I. Placement and restoration of internal conical connection implant (임플란트 연결부의 개념과 적용: Part 1. 원추형 내부연결 임플란트의 식립과 보철)

  • Ko, Kyung-Ho;Kang, Hyeon-Goo;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.211-221
    • /
    • 2020
  • The typical biomechanical properties of an internal conical connection (ICC) are axial displacement and loss of preload. The axial displacement of an ICC without a vertical stop can cause the loss of preload and a lowered occlusion. The stress of an ICC is concentrated on the contact interface of the abutment and not on the screw, and during placement, it is important to choose a wider coronal wall thickness as much as possible. The ICC should also be placed below the level of the bone crest. During the restoration of an ICC, care should be taken to ensure an appropriate abutment shape and an accurate connection. To get the best clinical results, it is important to select its wall thickness and place it in the appropriate position to restore it adequately.

The influence of intentional mobilization of implant fixtures before osseointegration (골유착전 임플란트 고정체의 의원성 동요가 골결합에 미치는 영향)

  • Cho, Jin-Hyun;Jo, Kwang-Heon;Cho, Sung-Am;Lee, Kyu-Bok;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.149-155
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the influence of mobilization on bone-implant interface prior to osseointegration of fixtures. Materials and methods: The experimental implants (3.75 mm in diameter, 4.0 mm in length) were made of commercially pure (Grade IV) titanium, and were treated with RBM ($MegaGen^{(R)}$: Ca-P). The 80 implants (two in each tibia) were inserted into the monocortical tibias of 20 rabbits which each weighed more than 3.5 kg (Female, New Zealand White). According to the removal torque interval, the groups were divided into 10 groups, Group I (6 wks), Group II (4 days+6 wks), Group III (4 days+1 wk+6 wks), Group IV (1 wk+6 wks), Group V (1 wk+1 wk+6 wks), Group VI (2 wks+6 wks), Group VII (2 wks+ 1 wk+6 wk), Group VIII (3 wks+6 wks), Group IX (3 wks+1 wk+6 wks) and Group X (10 wks). The control groups were Group I and X, the removal torque was measured at 6 wks and 10 wks with a digital torque gauge (Mark-10, USA). In the experimental groups, the removal torque was given once or twice before the final removal torque and the value was measured each time. After which, the implants were put back where they had been except the control groups. All the experimental groups were given a final healing time (6 wks) before the final removal torque test, in which values were compared with the control groups and the 1st and/or 2nd removal torque values in each experimental group. Results: In the final removal torque tests, the removal torque value of Group X (10 wks) was higher than that of Group I (6 wks) in the control groups but not statistically different. There were no significant differences between the experimental groups and control groups (P>.05). In the first removal torque comparison, the experimental groups (4 days or 1 wk) values were significantly lower than the other experimental groups (2 wks or 3 wks). In the comparison of each experimental group according to healing time, the final removal torque value was significantly higher than the 1st torque test value. Conclusion: Once or twice mobilization of fixture prior to osseointegration did not deter the final bone to implant osseointegration, if sufficient healing time was given.

Influence of immediate loading on the removal torque value of mini-screws (교정력의 즉시 부하가 미니스크류의 제거 회전력에 미치는 영향의 평가)

  • Sun, Seung-Bum;Kang, Yoon-Goo;Kim, Seung-Hun;Mo, Sung-Seo;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.400-406
    • /
    • 2007
  • The purpose of this experimental study was to evaluate the effect of immediate orthodontic loading on the stability at the bone-implant interface of titanium miniscrews in a rabbit model. Methods: Forty titanium miniscrews (1.6 mm diameter, 8 mm length) were inserted in the tibiae of 10 rabbits. Twenty test group miniscrews were subjected to continuous orthodontic forces of 200g immediately after implantation for a period of 6 weeks. The remaining 20 control group miniscrews were left unloaded for the same follow-up interval. Removal torque values were recorded using a digital torque gauge. An independent t-test was performed. Results: All the miniscrews were stable, and exhibited no mobility or displacement throughout the experimental period. Histologically, miniscrews were well-integrated into bone. No statistically significant differences in removal torque data were found between the loaded test and the unloaded control groups. Conclusions: These findings suggest that titanium miniscrews can be used as anchoring units for orthodontic tooth movement immediately after insertion.