Influence of immediate loading on the removal torque value of mini-screws

교정력의 즉시 부하가 미니스크류의 제거 회전력에 미치는 영향의 평가

  • Sun, Seung-Bum (Department of Orthodontics, Graduate School of Clinical Dental Science, The Catholic University of Korea) ;
  • Kang, Yoon-Goo (Department of Orthodontics, Graduate School of Clinical Dental Science, The Catholic University of Korea) ;
  • Kim, Seung-Hun (Department of Orthodontics, Graduate School of Clinical Dental Science, The Catholic University of Korea) ;
  • Mo, Sung-Seo (Department of Orthodontics, Graduate School of Clinical Dental Science, The Catholic University of Korea) ;
  • Kook, Yoon-Ah (Department of Orthodontics, Graduate School of Clinical Dental Science, The Catholic University of Korea)
  • 선승범 (가톨릭대학교 임상치과학대학원) ;
  • 강윤구 (가톨릭대학교 임상치과학대학원) ;
  • 김성훈 (가톨릭대학교 임상치과학대학원) ;
  • 모성서 (가톨릭대학교 임상치과학대학원) ;
  • 국윤아 (가톨릭대학교 임상치과학대학원)
  • Published : 2007.12.31

Abstract

The purpose of this experimental study was to evaluate the effect of immediate orthodontic loading on the stability at the bone-implant interface of titanium miniscrews in a rabbit model. Methods: Forty titanium miniscrews (1.6 mm diameter, 8 mm length) were inserted in the tibiae of 10 rabbits. Twenty test group miniscrews were subjected to continuous orthodontic forces of 200g immediately after implantation for a period of 6 weeks. The remaining 20 control group miniscrews were left unloaded for the same follow-up interval. Removal torque values were recorded using a digital torque gauge. An independent t-test was performed. Results: All the miniscrews were stable, and exhibited no mobility or displacement throughout the experimental period. Histologically, miniscrews were well-integrated into bone. No statistically significant differences in removal torque data were found between the loaded test and the unloaded control groups. Conclusions: These findings suggest that titanium miniscrews can be used as anchoring units for orthodontic tooth movement immediately after insertion.

교정치료에서 고정원의 조절은 교정 장치의 선택과 적용에서 가장 중요한 요소 중 하나이다. 이 연구의 목적은 교정용 미니스크류의 식립 즉시 교정력을 적용한 군과 교정력을 적용하지 않은 군의 제거회전력 측정과 조직학적 분석을 통해 즉시 교정력을 가한 미니스크류의 고정원으로서의 안정성을 확인하여 식립 후 교정력을 적용 수 있는 시기의 선택에 도움을 주고자 하는 것이다. 외경 1.6 mm. 길이 8 mm인 총 40개의 타이타늄 미니스크류를 10마리 가토의 경골에 식립하였다. 20개의 미니스크류 실험군은 식립 직후부터 6주 동안 지속적인 200g의 교정력을 적용하였고 나머지 20개의 미니스크류 대조군은 교정력을 적용하지 않았다. 제거 회전력은 디지털 토크 게이지를 이용하여 측정하였으며 t-test를 이용하여 통계처리 하였고, 조직표본은 미니스크류를 제거한 후 H-E 염색하여 조직 소견을 관찰하였다. 제거회전력은 실험군과 대조군에서 통계학적으로 유의성 있는 차이를 보이지 않았으며, 조직학적으로 두 군간의 차이는 없었다. 본 연구의 결과는 교정용 미니스크류에 즉시 교정력을 가하더라도 안정적인 고정원으로 활용 할 수 있다는 점을 제시한다.

Keywords

References

  1. Wehrbein H, Glatzmaier J, Yildirim M. Orthodontic anchorage capacity of short titanium screw implants in the maxilla. An experimental study in the dog. Clin Oral Implants Res 1997;8:131-41 https://doi.org/10.1034/j.1600-0501.1997.080208.x
  2. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997;31:763-7
  3. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthod Orthognath Surg 1998;13:201-9
  4. Park HS. Orthodontic treatment using micro-implant. Seoul:Narae publishing; 2001
  5. Chung KR, Kim SH, Kook YA. The C-orthodontic micro-implant. J Clin Orthod 2004;38:478-86
  6. Chung K, Kim SH, Kook Y. C-orthodontic micro-implant for distalization of mandibular dentition in class III correction. Angle Orthod 2005;75:119-28
  7. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003;124:373-8 https://doi.org/10.1016/S0889-5406(03)00565-1
  8. Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants 2004;19:100-6
  9. Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop 2004;126:42-7 https://doi.org/10.1016/j.ajodo.2003.06.018
  10. Chen CH, Chang CS, Hsieh CH, Tseng YC, Shen YS, Huang IY, Yang CF, Chen CM. The use of microimplants in orthodontic anchorage. J Oral Maxillofac Surg 2006;64:1209-13 https://doi.org/10.1016/j.joms.2006.04.016
  11. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res 2006;17:109-14 https://doi.org/10.1111/j.1600-0501.2005.01211.x
  12. Fritz U, Ehmer A, Diedrich P. Clinical suitability of titanium micro-screws for orthodontic anchorage-preliminary experiences. J Orofac Orthop 2004;65:410-8
  13. Cho JH. The effects on orthodontic miniscrew implants according to the timing of force application. PhD thesis. Yonsei University, 2003
  14. Meredith N, Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491-501
  15. Johansson CB, Albrektsson T. Integration of screw implants in the rabbit: a 1-year follow-up of removal torque test. Int J Oral Maxillofac Implants 1987;2:69-75
  16. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T. Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 1988;3:21-4
  17. Sullivan DY, Sherwood RL, Collins TA, Krogh PH. The reversetorque test: A clinical report. Int J Oral Maxillofac Implants 1996;11:179-85
  18. Kim JW, Ahn SJ, Chang YI. Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2005;128:190-4 https://doi.org/10.1016/j.ajodo.2004.01.030
  19. Johansson C, Albrektsson T. Integration of screw Implants in the rabbit: A 1-year follow-up of removal torque of titanium implants. Int J Oral Maxillofac Implants 1987;2:69-75
  20. Yun YK. Removal torque and bone formation of orthodontic miniscrew implant. PhD thesis. Korea University, 2004
  21. Buchter A, Wiechmann D, Koerdt S, Wiesmann HP, Piffko J, Meyer U. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implants Res 2005;16:473-9 https://doi.org/10.1111/j.1600-0501.2005.01149.x
  22. Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaption to continuous loading of rigid endosseous implants. Am J Orthod 1984;86:95-111 https://doi.org/10.1016/0002-9416(84)90301-4
  23. Pilliar RM, Cameron HU, Welsh RP, Binnington AG. Radiographic and morphologic studies of load-bearing porous-surfaced structured implants. Clin Orthop Relat Res 1981;156:249-57
  24. Roberts WE, Arbuckle GR, Analoui M. Rate of mesial translation of mandibular molars using implant-anchored mechanics. Angle Orthod 1996;66:331-8
  25. Meredich N. Assessment of implant stability as a prognostic determinant. Int J Prothodont 1998;11:491-501
  26. Johansson CB, Albrektsson T. A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clin Oral Implants Res 1991;2:24-9 https://doi.org/10.1034/j.1600-0501.1991.020103.x
  27. Majzoub Z, Finotti M, Miotti F, Giardino R, Aldini NN, Cordioli G. Bone response to orthodontic loading of endosseous implants in the rabbit calvaria: early continuous distalizing forces. Eur J Orthod 1999;21:223-30 https://doi.org/10.1093/ejo/21.3.223
  28. Romanos GE, Toh CG, Siar CH, Swaminathan D. Histologic and histomorphometric evaluation of peri-implant bone subjected to immediate loading: an experimental study with Macaca fascicularis. Int J Oral Maxillofac Implants 2002;17:44-51
  29. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 1984;66:397-402 https://doi.org/10.2106/00004623-198466030-00012
  30. Rubin CT, Lanyon LE. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res 1987;5:300-10 https://doi.org/10.1002/jor.1100050217