• 제목/요약/키워드: Bone Marrow Stromal Cell

검색결과 64건 처리시간 0.031초

The Neovascularization Effect of Bone Marrow Stromal Cells in Temporal Muscle after Encephalomyosynangiosis in Chronic Cerebral Ischemic Rats

  • Kim, Hyung-Syup;Lee, Hyung-Jin;Yeu, In-Seung;Yi, Jin-Seok;Yang, Ji-Ho;Lee, Il-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • 제44권4호
    • /
    • pp.249-255
    • /
    • 2008
  • Objective : In Moyamoya disease, the primary goal of treatment is to improve collateral circulation through angiogenesis. In the present study, we obtained and sub-cultured bone marrow stromal cells (BMSCs) from rats without a cell-mediated immune response. Then, we injected the labeled BMSCs directly into adjacent temporal muscle during encephalomyosynangiosis (EMS). Three weeks after BMSC transplantation, we examined the survival of the cells and the extent of neovascularization. Methods : We divided 20 rats into a BMSC transplantation group (n=12) and a control group (n=8). Seven days after the induction of chronic cerebral ischemia, an EMS operation was performed, and labeled BMSCs ($1{\times}106^6/100\;{\mu}L$) were injected in the temporal muscle for the transplantation group, while an equivalent amount of culture solution was injected for the control group. Three weeks after the transplantation, temporal muscle and brain tissue were collected for histological examination and western blot analysis. Results : The capillary/muscle ratio in the temporal muscle was increased in the BMSC transplantation group compared to the control group, showing a greater increase of angiogenesis (p<0.05). In the brain tissue, angiogenesis was not significantly different between the two groups. The injected BMSCs in the temporal muscle were vascular endothelial growth factor (VEGF)-positive by immunofluorescence staining. In both temporal muscle and brain tissue, the expression of VEGF by western blot analysis was not much different between the two groups. Conclusion : During EMS in a chronic cerebral ischemia rat model, the injection of BMSCs resulted in accelerated angiogenesis in the temporal muscle compared to the control group.

골수유래 간엽줄기세포와 점착성 단백질 및 폴리펩타이드가 흡착된(락티이드/글리콜라이드) 공중합체 지지체와의 상호작용 (Interaction of Bone Marrow Stromal Stem Cells with Adhesive Protein and Polypeptide-adsorbed Poly(lactide-co-glycolide) Scaffolds)

  • 최진산;이상진;장지욱;강길선;이영무;이봉;이해방
    • 폴리머
    • /
    • 제27권5호
    • /
    • pp.397-404
    • /
    • 2003
  • 조직공학적 지지체에서의 골수유래 간엽줄기세포의 점착과 성장에 있어서 세포 점착성 단백질과 폴리펩타이드와의 상호작용을 조사하였다. 세포 점착성 물질로 알려진 단백질이나 폴리펩타이드는 락타이드-글리콜라이드 공중합체인 PLGA 필름과 지지체에 흡착하여 코팅되었으며, 이에 골수유래 간엽줄기 세포의 점착과 성장 거동을 비교하였다. 이들 단백질과 폴리펩타이드는 콜라겐 IV형과 피브리노겐, 라미닌, 젤라틴, 피브로넥틴, 폴리(L-라이신)이 사용되었다. 이중 폴리(L-라이신)을 제외한 단백질과 폴리펩타이드는 PLGA 필름 표면에 거의 단층으로 덮어져 흡착되었으며, PLGA 필름과 지지체에서 골수유래 간엽줄기세포가 1일과 2일, 4일간 배양되었다. 세포의 점착과 성장 거동은 sulforhodamine B법으로 평가하였다. PLGA 필름과 지지체에 단백질이나 폴리펩타이드가 흡착되지 않은 표면보다는 흡착된 표면에서의 세포의 점착과 성장이 우수하였다.

Chondrogenic Differentiation of Bone Marrow Stromal Cells in Transforming Growth $Factor-{\beta}_{1}$ Loaded Alginate Bead

  • Park, Ki-Suk;Jin Chae-Moon;Kim, Soon-Hee;Rhee John M.;Khang Gil-Son;Han, Chang-Whan;Yang, Yoon-Sun;Kim, Moon-Suk;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제13권4호
    • /
    • pp.285-292
    • /
    • 2005
  • We developed alginate beads loaded with transforming growth $factor-{\beta}_{1}(TGF-{\beta}_{1})$ to examine the possible application of the scaffold and cytokine carrier in tissue engineering. In this study, bone marrow stromal cells (BMSCs) and $TGF{\beta}_{1}$ were uniformly encapsulated in the alginate beads and then cultured in vitro. The cell morphology and shape of the alginate beads were observed using inverted microscope, scanning electron microscope (SEM), histological staining and RT-PCR to confirm chondrogenic differentiation. The amount of the $TGF{\beta}_{1}$ released from the $TGF-{\beta}_{1}$ loaded alginate beads was analyzed for 28 days in vitro in a phosphate buffered saline (pH 7.4) at $37^{\circ}C$. We observed the release profile of $TGF-{\beta}_{1}$ from $TGF-{\beta}_{1}$ loaded alginate beads with a sustained release pattern for 35 days. Microscopic observation showed the open cell pore structure and abundant cells with a round morphology in the alginate beads. In addition, histology and RT-PCR results revealed the evidence of chondrogenic differentiation in the beads. In conclusion, these results confirmed that $TGF-{\beta}_{1}$ loaded alginate beads provide excellent conditions for chondrogenic differentiation.

Inhibition of osteoclast formation by putative human cementoblasts

  • Kim, Mi-Ri;Yang, Won-Kyung;Grzesik, Wojciech;Ko, Hyun-Jung
    • International Journal of Oral Biology
    • /
    • 제33권3호
    • /
    • pp.113-116
    • /
    • 2008
  • Cementum is the mineralized tissue of the tooth. It is similar to bone in several aspects but it differs from bone. Human bone marrow stromal cells (BMSC) and human cementum derived cells (HCDC) (10,000 $cells/cm^2$) were plated in 6 well plates as feeder cells. The next day, mouse bone marrow cells (1.5 million $cells/cm^2$) were added. One group of these plates were incubated in serum-free conditioned medium (SFCM) generated from BMSC or HCDC supplemented with 2% FBS, parathyroid hormone (PTH), 1, 25 dihydroxyvitamin $D_3$ (Vit. $D_3$) and dexamethasone, or plain medium with the same supplements. Another group of plates were cocultured with BMSC or HCDC in plain medium supplemented with 2% FBS, PTH, Vit. $D_3$ and dexamethasone. Plates grown without SFCM or coculture were used as controls. After 10 days, the cells were stained for tartrate-resistant acid phosphatase (TRAP). BMSC were found to support osteoclast formation under normal conditions. This was inhibited however by both SFCM generated from HCDC and also by coculture with HCDC. In addition, HCDC themselves did not support osteoclast formation under any conditions. Our results thus indicate that HCDC do not support osteoclast formation in vitro and that soluble factor (s) from HCDC may inhibit this process. In addition, we show that this inhibition also involves an active mechanism that is independent of osteoprotegerin, a feature that may distinguish cementoblasts from other cells present in periodontium.

창상치유목적의 골수기질세포 동종이식을 위한 고분자막의 조건 (Optimal Condition of Microporous Membrane for Bone Marrow Stromal Cell Allotransplantation to Stimulate Wound Healing in Vitro)

  • 이은상;김명주;한승규;홍성택;김우경
    • Archives of Plastic Surgery
    • /
    • 제37권5호
    • /
    • pp.509-518
    • /
    • 2010
  • Purpose: Major drawbacks of conventional bone marrow stromal cells (BSCs) transplantation method are mainly caused by direct transplanted cell to host cell interactions. We hypothesized that separation of the transplanted cells by a microporous membrane might inhibit most of the potential adverse effects and induce superior effect. The purpose of the study is to determine the optimal condition of the microporous membrane. Methods: First, BSCs were placed in polyethylene terephthalate (PET) transwell inserts with 3, 8, or $12{\mu}m$ pore size, and cultured in 24 well culture plates. After 5 days, bottoms of the plates were observed for presence of attached BSCs in monolayer and cell numbers were evaluated. Second, BSCs were placed PET, polycarbonate (PCT), and mixed cellulose esters (MCE) transwell inserts with 3 and $8{\mu}m$ pore size, and cultured in 24 well culture plates. After 3 days, the supernatants of the media left in culture plate were analyzed for collagen, vascular endothelial growth factor (VEGF), platelet derived growth factor BB (PDGF-BB), and basic fibroblast growth factor (bFGF). Third, BSCs were placed in 15% and 70% of the PET membrane with $3{\mu}m$ pore size. All the experimental conditions and methods were same as the second study. Results: The optimal pore sizes to prevent BSC leakage were $3{\mu}m$ and $8{\mu}m$. The amounts of type I collagen and three growth factors tested did not show significant differences among PET, PCT, and MCE groups. However, the collagen, VEGF, and bFGF levels were much higher in the high (70%) density group than in the low (15%) density group. Conclusion: This study revealed that the optimal pore size of membrane to prevent direct BSC to recipient cell contact is in between $3{\mu}m$ and $8{\mu}m$. Membrane materials and pore sizes do not influence the collagen and growth factor passage through the membrane. The most striking factor for collagen and growth factor transport is pore density of the membrane.

A Mouse Thymic Stromal Cell Line Producing Macrophage-Colony Stimulating Factor and Interleukin-6

  • Lee, Chong-Kil;Kim, Jeong-Ki;Kim, Kyungjae;Han, Seong-Sun
    • Archives of Pharmacal Research
    • /
    • 제23권3호
    • /
    • pp.252-256
    • /
    • 2000
  • A thymic stromal cell line, TFGD, was established from a thymic tumor mass developed spontaneously in p53 knock out mouse, and was found to produce cytokines that could induce bone marrow hematopoietic stem cells (HSCs) to differentiate into macrophages. The cytokines produced by the TFGD line were assessed by immunoassays. High level of macrophage-colony stimulating factor (M-CSF) and interleukin (IL)-6 was detected in the TFGD-culture supernatant, whereas granulocyte/macrophage-colony stimulating factor (GM-CSF), IL-3, IL-4, IL-5, IL-13, or interferon (IFN)-$\gamma$ was undetectable. Blocking experiments showed that anti-M-CSF monoclonal antibody could neutralize the differentiation-inducing activity shown by the TFGD-culture supernatant. Dot blot analysis of the total RNA isolated from the cultured fetal thymic stromal cells showed that M-CSF transcripts were expressed in the normal thymus. These observations, together with the earlier finding that M-CSF plus IL-6 is the optimal combination of cytokines for the induction of macrophage differentiation from HSCs in vitro, may indicate that thymic macrophages could be generated within the thymus by cytokines involving M-CSF.

  • PDF

사람 골 형성 단백질 Ex vivo 유전자 치료법을 이용한 척추 유합 (Spinal Fusion Based on Ex Vivo Gene Therapy Using Recombinant Human BMP Adenoviruses)

  • 김기범;김재룡;안면환;서재성
    • Journal of Yeungnam Medical Science
    • /
    • 제24권2호
    • /
    • pp.262-274
    • /
    • 2007
  • AdBMP-2와 AdBMP-7을 형질도입 시킨 사람 섬유아세포와 사람 골수기질세포를 면역결핍 생쥐의 척추 옆 근육으로 주입하여 척추 유합을 유도한 결과, AdBMP-7/BMSC가 AdBMP-2/BMSC 또는 AdBMP-7/HuFb와 AdBMP-2/HuFb 보다 골 형성능이 우수하였으며, 척추 유합을 잘 유도하였음을 확인하였다.

  • PDF

The Expression of Immunomodulation-Related Cytokines and Genes of Adipose- and Bone Marrow-Derived Human Mesenchymal Stromal Cells from Early to Late Passages

  • Mun, Chin Hee;Kang, Mi-Il;Shin, Yong Dae;Kim, Yeseul;Park, Yong-Beom
    • Tissue Engineering and Regenerative Medicine
    • /
    • 제15권6호
    • /
    • pp.771-779
    • /
    • 2018
  • BACKGROUND: Mesenchymal stromal cells (MSCs) are multipotent stem cells that can differentiate into several cell types. In addition, many studies have shown that MSCs modulate the immune response. However, little information is currently available regarding the maintenance of immunomodulatory characteristics of MSCs through passages. Therefore, we investigated and compared cytokine and gene expression levels from adipose (AD) and bone marrow (BM)-derived MSCs relevant to immune modulation from early to late passages. METHODS: MSC immunophenotype, growth characteristics, cytokine expressions, and gene expressions were analyzed. RESULTS: AD-MSCs and BM-MSCs had similar cell morphologies and surface marker expressions from passage 4 to passage 10. Cytokines secreted by AD-MSCs and BM-MSCs were similar from early to late passages. AD-MSCs and BM-MSCs showed similar immunomodulatory properties in terms of cytokine secretion levels. However, the gene expressions of tumor necrosis factor-stimulated gene (TSG)-6 and human leukocyte antigen (HLA)-G were decreased and gene expressions of galectin-1 and -3 were increased in both AD- and BM-MSCs with repeated passages. CONCLUSION: Our study showed that the immunophenotype and expression of immunomodulation-related cytokines of AD-MSCs and BM-MSCs immunomodulation through the passages were not significantly different, even though the gene expressions of both MSCs were different.

Stem cell niche as a prognostic factor in leukemia

  • Lee, Ga-Young;Kim, Jin-A;Oh, Il-Hoan
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.427-428
    • /
    • 2015
  • Despite high interests on microenvironmental regulation of leukemic cells, little is known for bone marrow (BM) niche in leukemia patients. Our recent study on BMs of acute myeloid leukemia (AML) patients showed that the mesenchymal stromal cells (MSCs) are altered during leukemic conditions in a clinical course-dependent manner. Leukemic blasts caused reprogramming of transcriptomes in MSCs and remodeling of niche cross-talk, selectively suppressing normal primitive hematopoietic cells while supporting leukemogenesis and chemo-resistance. Notably, differences in BM stromal remodeling were correlated to heterogeneity in subsequent clinical courses of AML, i.e., low numbers of mesenchymal progenitors at initial diagnosis were correlated to complete remission for 5-8 years, and high contents of mesenchymal progenitor or MSCs correlated to early or late relapse, respectively. Thus, stromal remodeling by leukemic cell is an intrinsic part of leukemogenesis that can contribute to the clonal dominance of leukemic cells over normal hematopoietic cells, and can serve as a biomarker for prediction of prognosis. [BMB Reports 2015; 48(8): 427-428]

조직공학 재생골을 위한 연구에서 사람 골수 기원 간엽줄기세포의 나이에 따른 조골세포 분화능에 관한 연구 (Osteoblast differentiation of human bone marrow stromal cells (hBMSC) according to age for bone tissue engineering)

  • 송진아;류현모;최진영
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권4호
    • /
    • pp.243-249
    • /
    • 2010
  • Tissue engineered bone (TEB) can replace an autogenous bone graft requiring an secondary operation site as well as avoid complications like inflammation or infection from xenogenic or synthetic bone graft. Adult mesenchymal stem cells (MSC) for TEB are considered to have various ranges of differentiation capacity or multipotency by the donor site and age. This study examined the effect of age on proliferation capacity, differentiation capacity and bone morphogenetic protein-2 (BMP-2) responsiveness of human bone marrow stromal cells (hBMSC) according to the age. In addition, to evaluate the effect on enhancement for osteoblast differentiation, the hBMSC were treated with Trichostatin A (TSA) and 5-Azacitidine (5-AZC) which was HDAC inhibitors and methyltransferase inhibitors respectively affecting chromatin remodeling temporarily and reversibly. The young and old group of hBMSC obtained from the iliac crest from total 9 healthy patients, showed similar proliferation capacity. Cell surface markers such as CD34, CD45, CD90 and CD105 showed uniform expression regardless of age. However, the young group showed more prominent transdifferentiation capacity with adipogenic differentiation. The osteoblast differentiation capacity or BMP responsiveness was low and similar between young and old group. TSA and 5-AZC showed potential for enhancing the BMP effect on osteoblast differentiation by increasing the expression level of osteogenic master gene, such as DLX5, ALP. More study will be needed to determine the positive effect of the reversible function of HDAC inhibitors or methyltransferase inhibitors on enhancing the low osteoblast differentiation capacity of hBMSC.