• Title/Summary/Keyword: Bonding -Film

Search Result 522, Processing Time 0.026 seconds

FE-SEM Image Analysis of Junction Interface of Cu Direct Bonding for Semiconductor 3D Chip Stacking

  • Byun, Jaeduk;Hyun, June Won
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.5
    • /
    • pp.207-212
    • /
    • 2021
  • The mechanical and electrical characteristics can be improved in 3D stacked IC technology which can accomplish the ultra-high integration by stacking more semiconductor chips within the limited package area through the Cu direct bonding method minimizing the performance degradation to the bonding surface to the inorganic compound or the oxide film etc. The surface was treated in a ultrasonic washer using a diamond abrasive to remove other component substances from the prepared cast plate substrate surface. FE-SEM was used to analyze the bonding characteristics of the bonded copper substrates, and the cross section of the bonded Cu conjugates at the sintering junction temperature of 100 ℃, 150 ℃, 200 ℃, 350 ℃ and the pressure of 2303 N/cm2 and 3087 N/cm2. At 2303 N/cm2, the good bonding of copper substrate was confirmed at 350 ℃, and at the increased pressure of 3087 N/cm2, the bonding condition of Cu was confirmed at low temperature junction temperature of 200 ℃. However, the recrystallization of Cu particles was observed due to increased pressure of 3087 N/cm2 and diffusion of Cu atoms at high temperature of 350 ℃, which can lead to degradation in semiconductor manufacturing.

Optimal Condition of Hydroxyapatite Powder Plasma Spray on Ti6Al4V Alloy for Implant Applications

  • Ahn, Hyo-Sok;Lee, Yong-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.211-214
    • /
    • 2012
  • Optimal conditions for HA plasma spray-coating on Ti6Al4V alloy were investigated in order to obtain enhanced bone-bonding ability with Ti6Al4V alloy. The properties of plasma spray coated film were analyzed by SEM, XRD, surface roughness measurement, and adhesion strength test because the film's transformed phase and crystallinity were known to be influential to bone-bonding ability withTi6Al4V alloy. The films were formed by a plasma spray coating technique with various combinations of plasma power, spray distance, and auxiliary He gas pressure. The film properties were analyzed in order to determine the optimal spray coating parameters with which we will able to achieve enhanced bone-bonding ability with Ti6Al4V alloy. The most influential coating parameter was found to be the plasma spray distance to the specimen from the spray gun nozzle. Additionally, it was observed that a relatively higher film crystallinity can be obtained with lower auxiliary gas pressure. Moderate adhesion strength can be achievable at minimal plasma power. That is, adhesion strength is minimally dependent on the plasma power. The combination of shorter spray distance, lower auxiliary gas pressure, and moderate spray power can be recommended as the optimal spray conditions. In this study, optimal plasma spray coated films were formed with spray distance of 70 mm, plasma current of 800 A, and auxiliary gas pressure of 60 psi.

A Surface Modification of Hastelloy X by Sic Coating and Ion Beam Mixing for Application in Nuclear Hydrogen Production

  • Kim, Jaeun;Park, Jaewon;Kim, Minhwan;Kim, Yongwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.205.2-205.2
    • /
    • 2014
  • The effects of ion beam mixing of a SiC film coated on super alloys (hastelloy X substrates) were studied, aiming at developing highly sustainable materials at above $900^{\circ}C$ in decomposed sulfuric acid gas (SO2/SO3/H2O) channels of a process heat exchanger. The bonding between two dissimilar materials is often problematic, particularly in coating metals with a ceramics protective layer. A strong bonding between SiC and hastelloy X was achieved by mixing the atoms at the interface by an ion-beam: The film was not peeled-off at ${\geq}900^{\circ}C$, confirming excellent adhesion, although the thermal expansion coefficient of hastelloy X is about three times higher than that of SiC. Instead, the SiC film was cracked along the grain boundary of the substrate at above $700^{\circ}C$. At ${\geq}900^{\circ}C$, the film was crystallized forming islands on the substrate so that a considerable part of the substrate surface could be exposed to the corrosive environment. To cover the exposed areas and cracks multiple coating/IBM processes have been developed. An immersion corrosion test in 80% sulfuric acid at $300^{\circ}C$ for 100 h showed that the weight retain rate was gradually increased when increasing the processing time.

  • PDF

Development of High Aspect Ratio Spacer Process using Anodic Bonding for FED (정전접합을 이용한 고종횡비의 FED용 스페이서 공정 개발)

  • Kim, Min-Su;Kim, Gwan-Su;Mun, Gwon-Jin;U, Gwang-Je;Lee, Nam-Yang;Park, Se-Gwang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.70-72
    • /
    • 2000
  • In this paper, a spacer process for FED(Field Emission Display) was developed with the glass to glass anodic bonding technology using Al film as an interlayer and a 3.5 inch monochromatic type FED was fabricated. Holder to dislocate spacers vertically was designed with (110) Si wafer by bulk etching. Spacers, $100\mum\; width\; and\; 1000\mum$ height, were formed on anode panel by spacer to glass anodic bonding and the fabricated FED was operated for emission at 1㎸ anode voltage.

  • PDF

Bonding structure of the DLC films deposited by RE-PECVD (RE-PECVD법에 의해 증착된 DLC박막의 결합 특성)

  • 최봉근;신재혁;안종일;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • The diamond-like carbon (DLC) films were deposited on the Si (100) wafer by a rf-PECVD method as a function of the mixture rate of methane-hydrogen gas and bias voltage. The bonding structure and mechanical properties of these deposited DLC films were investigated using FT-IR, Raman, and nano-indenter. The deposition rates of DLC films increased with increased flow rate of methane in the gas mixtures and increased bias voltage. The $sp^3/sp^2$ bonding ratio of carbon in thin film and the hardness increased with increasing flow rate of hydrogen in the gas mixtures and increasing bias voltage.

Bondability of Different Electronic Materials by Micro Heat source (마이크로 열원에 의한 이종전자재료의 접합성)

  • 이철인;서용진;신영의;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.206-209
    • /
    • 1994
  • This paper has been researched bondability of electronic devices, such as lead frame and thick film of Ag/Pd on an alumina substrate by different heat sources. To obtain the bonds with high quality, it is very important to control both the thermal distribution of the bonds and it stability, because electronics components is consist of different materials. Therefore, this paper clarifies not only heat mechanism of micro parallel gap resistance bonding method and pulse heat tip bonding method but also investigates selection of heat sources with micro-electronic materials for bonding. Finally, it is realzed fluxless bonding process with filler metal such as plating layers.

Processing and Characterization of a Direct Bonded SOI using SiO$_2$ Thin Film (SiO$_2$ 박막을 이용한 SOI 직접접합공정 및 특성)

  • 유연혁;최두진
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.863-870
    • /
    • 1999
  • SOI(silicon on insulafor) was fabricated through the direct bonding using (100) Si wafer and 4$^{\circ}$off (100) Si wafer to investigate the stacking faults in silicon at the Si/SiO2 oxidized and bonded interface. The treatment time of wafer surface using MSC-1 solution was varied in order to observe the effect of cleaning on bonding characteristics. As the MSC-1 treating time increased surface hydrophilicity was saturated and surface microroughness increased. A comparison of surface hydrophilicity and microroughness with MSC-1 treating time indicates that optimum surface modified condition for time was immersed in MSC-1 for 2 min. The SOI structure directly bonded using (100) Si wafer and 4$^{\circ}$off (100) Si wafer at the room temperature were annealed at 110$0^{\circ}C$ for 30 min. Then the stacking faults at the bonding and oxidation interface were examined after the debonding. The results show that there were anomalies in the gettering of the stacking faults at the bonded region.

  • PDF

Optimization of Elastic Modulus and Cure Characteristics of Composition for Die Attach Film (다이접착필름용 조성물의 탄성 계수 및 경화 특성 최적화)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.503-509
    • /
    • 2019
  • The demand for smaller, faster, and multi-functional mobile devices in increasing at a rapidly increasing rate. In response to these trends, Stacked Chip Scale Package (SCSP) is used widely in the assembly industry. A film type adhesive called die attach film (DAF) is used widely for bonding chips in SCSP. The DAF requires high flowability at high die attachment temperatures for bonding chips on organic substrates, where the DAF needs to feel the gap depth, or for bonding the same sized dies, where the DAF needs to penetrate bonding wires. In this study, the mixture design of experiment (DOE) was performed for three raw materials to obtain the optimized DAF recipe for low elastic modulus at high temperature. Three components are acrylic polymer (SG-P3) and two solid epoxy resins (YD011 and YDCN500-1P) with different softening points. According to the DOE results, the elastic modulus at high temperature was influenced greatly by SG-P3. The elastic modulus at $100^{\circ}C$ decreased from 1.0 MPa to 0.2 MPa as the amount of SG-P3 was decreased by 20%. In contrast, the elastic modulus at room temperature was dominated by YD011, an epoxy with a higher softening point. The optimized DAF recipe showed approximately 98.4% pickup performance when a UV dicing tape was used. A DAF crack that occurred in curing was effectively suppressed through optimization of the cure accelerator amount and two-step cure schedule. The imizadole type accelerator showed better performance than the amine type accelerator.

Joint Behavior and Wind Resistance Characteristics of the Composite Waterproof Method in Which the Sheet Layer is Partially Attached with Perforated Film and the Joint is FRP-Treated (타공필름에 의한 부분절연과 FRP로 조인트부를 강성접착한 복합방수공법의 조인트 거동 및 내풍압 특성)

  • Choi, Sung-Min;Kwon, Yong-Hwa
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.85-86
    • /
    • 2023
  • This study confirmed the improvement of the Composite Waterproof Method in which the sheet layer is partially attached with perforated film and the joint is FRP-treated.

  • PDF

The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length (탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향)

  • Hong, Soon-kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.248-253
    • /
    • 2017
  • In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.