• Title/Summary/Keyword: Body-scheme

Search Result 502, Processing Time 0.022 seconds

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems based on Artificial Immune System (인공면역 시스템 기반 자율분산로봇 시스템의 협조 전략과 군행동)

  • 심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.627-633
    • /
    • 1999
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). Immune system is living body's self-protection and self-maintenance system. These features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For applying immune system to DARS, a robot is regarded as a ?3-cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robot using communication (immune network). Finally much stimulated strateby is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of optimal swarm strategy. Adaptation ability of robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

Research of the Development of Training Program for Quality Improvement Experts (의료의 질 개선 전문가 양성을 위한 체계 개발 연구)

  • Park, Seong-hi;Hwang, Jeong-hae;Choi, Yun-kyoung;Lee, Sun-gyo
    • Quality Improvement in Health Care
    • /
    • v.21 no.1
    • /
    • pp.12-31
    • /
    • 2015
  • Objectives : The purpose of this study was to develop the qualification system for training of Quality improvement professionals who work for improving patients' safety and healthcare quality. Methods : Based on the various laws and regulations, and the operational status of other professionals' qualification systems, a basic plan of professional qualification system of QI was drawn. And through meetings with QI experts, the final scheme of the concrete qualification system was developed. Results : For management of professionals's certification or qualification, fairness and reliability are important. To do this, setting the official standard, providing a standardized training program and having appropriate qualification test are required. In order to operate the qualification system strategically, 1) the introduction step, 2) dissemination and expansion step, and 3) fusing step should be considered. As a governing body for QI specialists' qualification, 'QI professionals' qualification Center (tentative)' must have the committee to assure fairness, professionalism, and reliability. In addition, 'QI Experts Certification Department (tentative)" to develop standards for the qualification tests and conduct the tests program,' QI experts Education Department (tentative name)" must be able to operate and maintain the QI training for professional qualifications. QI professional qualification exam must be taken by everyone regardless of age, gender, race, occupation, education, and work experience. The examination should include management, leadership, strategic planning and design, quality management, health care information, patient safety culture. Practical training courses can have three step programs; beginning, intermediate and special level. Conclusion : The QI qualification system need strategic approaches for the experts working for healthcare quality improvement and patient safety. It should include the program of standardized contents and test, and operating protocol of the qualificaton system.

DEVELOPMENT OF A REVERSE CONTINUOUS VARIABLE DAMPER FOR SEMI-ACTIVE SUSPENSION

  • Yoon, Young-Hwan;Choi, Myung-Jin;Kim, Kyung-Hoon
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions fur passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed. It is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-offbecomes smooth when the fixed orifice size increases. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20N, linearity, and variance of damping farce. The damping farce variance is wide and continuous, and is controlled by the spoof opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

Development and Application of an Explosion Modeling Technique Using PFC (PFC3D에서의 폭원모델링 기법의 개발 및 적용)

  • Choi Byung-Hee;Yang Hyung-Sik;Ryu Chang-Ha
    • Explosives and Blasting
    • /
    • v.22 no.4
    • /
    • pp.7-15
    • /
    • 2004
  • An explosion modeling technique was developed by using the spherical discrete element code, PFC3D, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a PFC3D particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). According to this concept, the explosion pressure is applied to the wall particles by the scheme of radius expansion/contraction of inner-hole particles. The output wall force is compared to the input hole pressure in every time step, and a correction routine is activated to control the radius multiplier of the inner-hole particles. A comparative blast simulation far a cement mortar block of $80\times90\times80mm$ was conducted by using the conventional explosion modeling method and the new one. The results of the simulation are presented in a qualitative fashion.

Electrokinetically Flow-Induced Streaming Potential Across the Charged Membrane Micropores: for the Case of Nonlinear Poisson-Boltzmann Electric Field (하전된 멤브레인 미세기공에서의 계면동전기적 유동에 의한 흐름전위: 비선형 Poisson-Boltzmann 전기장을 갖는 경우)

  • Myung-Suk Chun
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.37-46
    • /
    • 2003
  • The electrokinetic effect can be found in cases of the fluid flowing across the charged membrane micropores. The externally applied body force originated from the electrostatic interaction between the nonlinear Poisson-Boltzmann field and the flow-induced electrical field is taken into the equation of motion. The electrostatic potential profile is computed a priori by applying the finite difference scheme, and an analytical solution to the Navier-Stokes equation of motion for slit-like pore is obtained via the Green's function. An explicit analytical expression for the flow-induced streaming potential is derived as functions of relevant physicochemical parameters. The influences of the electric double layer, the surface potential of the wall, and the charge condition of the pore wall upon the velocity profile as well as the streaming potential are examined. With increasing of either the electric double layer thickness or the surface potential, the average fluid velocity is entirely reduced, while the streaming potential increases.

Attitude Control of A Two-wheeled Mobile Manipulator by Using the Location of the Center of Gravity and Sliding Mode Controller (무게중심위치와 슬라이딩 모드 제어를 통한 이륜형 모바일 머니퓰레이터의 자세제어)

  • Kim, Min-Gyu;Woo, Chang-Jun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.758-765
    • /
    • 2015
  • This paper proposes an attitude control system to keep the balance for a two-wheeled mobile manipulator which consists of a mobile platform and a three D.O.F. manipulator. In the conventional control scheme, complicated dynamics of the manipulator need to be derived for balancing control of a mobile manipulator. The method proposed in this paper, however, three links are considered as one body of mass and the dynamics are derived easily by using an inverted pendulum model. One of the best advantage of a sliding mode controller is low sensitivity to plant parameter variations and disturbances, which eliminates the necessity of exact modeling to control the system. Therefore the sliding mode control algorithm has been adopted in this research for the attitude control of mobile platform along the pitch axis. The center of gravity for the whole mobile manipulator is changing depending on the motion of the manipulator. And the orientation variation of center of gravity is used as reference input for the sliding mode controller of the pitch axis to maintain the center of gravity in the middle of robot to keep the balance for the robot. To confirm the performance of controller, MATLAB Simulink has been used and the resulting algorithms are applied to a real robot to demonstrate the superiority of the proposed attitude control.

Numerical Study on Wave-induced Motion of Offshore Structures Using Cartesian-grid based Flow Simulation Method (직교 격자계 기반 유동해석기법을 이용한 파랑 중 해양구조물의 운동 해석)

  • Nam, Bo Woo;Kim, Yonghwan;Yang, Kyung Kyu;Hong, Sa Young;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.7-13
    • /
    • 2012
  • This paper presents a numerical study of the wave loads acting on offshore structures using a Cartesian-grid-based flow simulation method. Finite volume discretization with a volume-of-fluid (VOF) method is adopted to solve two-phase Navier-Stokes equations. Among the many variations of the VOF method, the CICSAM scheme is applied. The body boundary conditions are satisfied using a porosity function, and wave generation is carried out by using transient (wave or damping) zone approaches. In order to validate the present numerical method, three different basic offshore structures, including a sphere, Pinkster barge, and Wigley model, are numerically investigated. First, diffraction and radiation problems are solved using the present numerical method. The wave exciting and drift forces from the diffraction problems are compared with potential-based solutions. The added mass and wave damping forces from the radiation problems are also compared with the potential results. Next, the wave-induced motion responses of the structures are calculated and compared with the existing experimental data. The comparison results are fairly good, showing the validity of the present numerical method.

On the Hydrodynamic Forces acting on a Partially Submerged Bag (부분적으로 물에 잠긴 백에 작용하는 유체역학적 힘)

  • G.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.104-113
    • /
    • 1992
  • The hydrodynamic problem is treated here when a pressurized bag is submerged partially into water and the end points of it oscillate. SES(Surface Effect Ship)has a bag filled with pressurized air at the stern in order to prevent the air leakage, and the pitch motion of SES is largely affected by the hydrodynamic force of the bag. The shape of a bag can be determined with the pressure difference between inside and outside. Once the hydrodynamic pressure is given, the shape of a bag can be obtained, however in order to calculate the hydrodynamic pressure we should know the shape change of the bag, and vice versa. Therefore the type of boundary condition on the surface of a bag is a moving boundary like a free surface boundary. In this paper, the formulation of this problem was done and linearized. The calculation scheme for the radiation problem of an oscillating bag is shown in comparison with the case that the bag is treated as rigid body. The hydrodynamic forces are calculated for various values of the pressure inside the bag and the submerged depth.

  • PDF

Exploiting Multi-Hop Relaying to Overcome Blockage in Directional mmWave Small Cells

  • Niu, Yong;Gao, Chuhan;Li, Yong;Su, Li;Jin, Depeng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.364-374
    • /
    • 2016
  • With vast amounts of spectrum available in the millimeter wave (mmWave) band, small cells at mmWave frequencies densely deployed underlying the conventional homogeneous macrocell network have gained considerable interest from academia, industry, and standards bodies. Due to high propagation loss at higher frequencies, mmWave communications are inherently directional, and concurrent transmissions (spatial reuse) under low inter-link interference can be enabled to significantly improve network capacity. On the other hand, mmWave links are easily blocked by obstacles such as human body and furniture. In this paper, we develop a multi-hop relaying transmission (MHRT) scheme to steer blocked flows around obstacles by establishing multi-hop relay paths. In MHRT, a relay path selection algorithm is proposed to establish relay paths for blocked flows for better use of concurrent transmissions. After relay path selection, we use a multi-hop transmission scheduling algorithm to compute near-optimal schedules by fully exploiting the spatial reuse. Through extensive simulations under various traffic patterns and channel conditions, we demonstrate MHRT achieves superior performance in terms of network throughput and connection robustness compared with other existing protocols, especially under serious blockage conditions. The performance ofMHRT with different hop limitations is also simulated and analyzed for a better choice of the maximum hop number in practice.

Solution and Estimate to the Angular Velocity of INS Formed only by Linear Accelerometers

  • Junwei, Wu;Jinfeng, Liu;Yunan, Zhang;Na, Yuan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.103-107
    • /
    • 2006
  • At present, most efforts tend to develop a INS which is only based linear accelerometers, because of the low cost micro-machining gyroscopes lack of the accuracy needed for precise navigation application and possible achieving the required levels of precise for micro-machining accelerometer. Although it was known in theory that a minimum of six accelerometers are required for a complete description of a rigid body motion, and any configuration of six accelerometers (except for a "measure zero " set of six-accelerometer schemes) will work. Studies on the feasible configuration of GF-INS indicate that the errors of angular velocity resolved from the six accelerometers scheme are diverged with time or have multi solutions. The angular velocity errors are induced by the biases together with the position vectors of the accelerometers, therefore, in order to treat with the problem just mentioned, researchers have been doing many efforts, such as the extra three accelerometers or the magnetometers may be taken as the reference information, the extended Kalman filter (EKF) involved to make the angular velocity errors bound and be estimated, and so on. In this paper, the typical configurations of GF-INS are introduced; for each type GF-INS described, the solutions to the angular velocity and the specific force are derived and the characteristic is indicated; one of the corresponding extend Kalman filters are introduced to estimate the angular errors; parts of the simulation results are presented to verify the validity of the equations of angular velocity and specific force and the performance of extend Kalman filter.

  • PDF