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Electrokinetically Flow-Induced Streaming Potential Across the Charged Membrane Micropores:
for the Case of Nonlinear Poisson-Boltzmann Electric Field
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Abstract: The electrokinetic effect can be found in cases of the fluid flowing across the charged membrane micropores.
The externally applied body force originated from the electrostatic interaction between the nonlinear Poisson-Boltzmann
field and the flow-induced electrical field is taken into the equation of motion. The electrostatic potential profile is
computed a priori by applying the finite difference scheme, and an analytical solution to the Navier-Stokes equation of
motion for slit-like pore is obtained via the Green's function. An explicit analytical expression for the flow-induced
streaming potential is derived as functions of relevant physicochemical parameters. The influences of the electric double
layer, the surface potential of the wall, and the charge condition of the pore wall upon the velocity profile as well as the
streaming potential are examined. With increasing of either the electric double layer thickness or the surface potential, the
average fluid velocity is entirely reduced, while the streaming potential increases.
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1. Introduction utilizing the Helmholtz-Smoluchowski equation [1-9].

The charge characterization of filtration membranes

Since the late 1980s, numerous researchers regarding was recognized with the results being expressed in
the membrane science have investigated on the terms of membrane zeta potential [1-9].

determination of membrane electrokinetic properties by As illustrated in Fig. 1, when a fluid is forced

through a microchannel of membrane pore under an

TCorresponding author (e-mail : mschun@kist.re kr) applied pressure, the counter-ions in the mobile part of
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Fig. 1. Schematic view of a development of flow-induced
streaming potential across a membrane pore filled with
electrolyte aqueous solution, where the pore walls are
same charged with constant surface potential.

the electric double layer (EDL) are carried toward the
downstream end. Then an electric current called the
streaming current results in the pressure-driven flow
direction. Corresponding to this streaming current,
there is an electrokinetic potential called the streaming
potential. This flow-induced streaming potential acts to
drive the counter-ions in the mobile part of the EDL
to move in the direction opposite to the streaming
current. This flow of ions in the opposite direction to
the pressure-driven flow will generate conduction
current. The overall result is a reduced flow rate in the
direction of pressure drop. If the reduced flow rate is
compared with the flow rate of uncharged inert case, it
seems that the fluid would have a higher viscosity,
which is usually referred to as the electroviscous
effect. The effect of EDL is neglected, as the EDL
thickness is quite small compared with the
characteristic size of the flow channel. However, the
EDL effect cannot be neglected in the filtrations with
porous membranes, where the EDL thickness is
comparable with the characteristic size of the pore.
Besides the microspace of membrane pore,
microflows are important in the design and utilization
of microfluidic devices, such as biomedical microchips

and other MEMS (micro-electro mechanical system)
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devices [10]. Fluid flowing in microchannels with
dimensions less than the order of tens of micrometers
at readily achievable laminar flow speeds are character-
ized by low Reynolds number. The fluid flow in
charged microchannels is definitely influenced by the
electrokinetic effect and hence deviates from that
described by the traditional form of the Navier-Stokes
equation.

About forty years ago, the effect of the surface
potential on fluid transport through narrow cylindrical
capillary with the Debye-Hiickel approximation was
examined [11]. Later, the same problem with higher
surface potential was investigated by developing an
approximate solution to the Poisson-Boltzmann (P-B)
equation pertaining to an imposed electric field [12]. In
recent, the electrokinetic flow velocity in rectangular
channels was estimated by solving coupled equation of
motion with P-B  equation [13]. For slit-like
microchannel with a linearized P-B field, analytical
solutions to the flow velocity and the flow-induced
streaming potential have been obtained by employing
the Green's function [14].

Based on the previous study, the electrokinetically
flow-induced streaming potential in a well-defined
slit-like membrane pore is analyzed here, by applying
the Green's function formulation. The electrostatic
potential is firstly considered by solving the nonlinear
P-B equation using the finite difference method
(FDM), and then the equation of motion is developed
by dealing with the external body force. The electric
potential profile is predicted with variations of ionic
concentration of solution, surface potential, and charge
condition of the pore wall, from which both the
velocity profile and the streaming potential are estimated.

2. Explicit Analysis on Electrokinetic Flow
Fields

2.1. Flow Through a Charged Slit-like Mem-
brane Pore
The Navier-Stokes equation furnishes the paradigm
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for describing the equation of motion for an
incompressible ionic fluid, given by

% +o(v Vo = —Vp+ F+ qvis (1)

where o and 7 are the density and viscosity of the
fluid, respectively. For one-dimensional laminar flow
through a slit-like pore, v = [0, 0, v/(y)] is taken with
Cartesian coordinates [15]. Neglecting gravitational
forces, the body force per unit volume F ubiquitously
caused by the z-directional action of an induced
electrical field E, on the net charge density o. can be
written F, = p.E,. With these identities, Equation (1)
is reduced to

dv _ dp
dyz - dZ + peEz . (2)

7

In view of taking a flow only in the z-direction in a
slit spaced a distance 2H apart, the velocity profile v,
is known as a plane Poiseuille flow. One obtains the
nondimensionalized equation of motion, such that

&V .
o = 4L+ 1 \Esinhw 3)

with the following dimensionless parameters

Y=0 77 Gr " V= U -
Re——”,P— pUz’E_ifﬁg ,
2z,en, ¢ ,
r, = ===
! oU* 4

where dy means the hydraulic diameter (i.e., 4H), U
the reference velocity, and ¢, the reference electrical
potential. The boundary conditions are applied as

v=0 av=1, (52)
h

av _ -

7y = 0 alfY—O. (5b)
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Applying the Green's function reported in the
previous study [14] can provide the velocity profile as
follows (cf., for more detail, see Appendix A)

d, & Y
N = Van - G S8 er,
H/d, , . g
X f~H/d,,dY cosVB,Y snh¥& . (6)

Here, Vinen is the velocity profile in the absence of the
electrostatic interaction, that equals to the plane
Poiseuille flow profile as (H*/2 p Xdp/dz)[1-(y/H)].
Ultimately, the average fluid velocity is obtained as

Hid,

fo YV

Hld,

deY

dz [oe) . n
_< V> inevt + ?}éEFInZIJ—lL

372
B
Hid,

X f~H/d,,dY cosV B, Y sinh &

<V

f

2dy & 1 dP ., 4 & (=]
- - HEr G g 2 G

X f_ H/d,,dY' cosV 8, Y'sinh¥ . (7

2.2. Flow-induced electrokinetic potential or
streaming potential

As derived in Equation (3), both the local and the
average fluid velocities can be calculated when the
nondimensional induced electrical field E is known.
Ions from the double layer region are transported along
with the solution, resulting in a streaming current I, in
the direction of flow. The resultant induced electro-
kinetic potential, or the streaming potential E,, then
induces a flow of ions in the opposite direction known
as the electrical conduction current I.. Once the flow
reaches a steady state, a summation of the streaming
and the conduction currents should be zero, so that

v-l=L+1=0. ®)
The streaming current I; caused by the pressure-

Membrane J. Vol. 13, No. 1, 2003
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driven flow is called the electrical convection current.
For a slit-like micropore with the specified width W, it
is defined by

I = Wa,U[dYoe.V. 9)

The electrical conduction current 1. can be expressed

as

E¢y,
the

I. = 2,EQHW = 2, (2HW) (10)

where A is the total electrical conductivity and 2HW
is the cross-sectional area of the pore. The electrical
conduction current consists of bulk electrical conduc-
tivity and surface electrical conductivity. The bulk
conductivity of the monovalent symmetric electrolyte
(e.g., NaCl or KCI solution) is almost much greater
than the surface conductivity of the pore wall made on
inorganic or polymeric materials. In this respect, A
can be determined by the value of bulk conductivity
alone.

Substituting Equations (9) and (10) into Equation
(8), the nondimensional induced electrokinetic potential

E is readily derived as

_ 2dhe&°U T . & cosVB,Y . dP
E = = fﬁmdhdYsthf(n: g (=D dZ)/
2HY , A4 + dyUe x'I
d’Re H
Hid) . o COS\/EY Hld, , L.
fﬁmdrdYsmhlIf(nZ‘—ﬁ——ﬂn f_ md’dY cos\/?,, Y’ sinh w) ]
_ dyyRe 14 . & cosVB,Y «dP
n H fﬁmdhdYsmhw( nZl £ (-1 dz )/
&5 \I'»Re
14 Arrame
Hid, ) o cos\/E y Hd , .
fﬁmdhdYsmhw‘(nZlT J padY cosVBY sthf)]
(11)
where the dimensionless variable [ = 2zemdyU/
Atdo.
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3. Long-Range Interaction with Nonlinear
Poisson-Boltzmann Electric Field

For the charged surface contacting with electrolytes,
the electrostatic charge would influence the distribution
of nearby ions so that an electric field is established.
The charges on the solid surface and the balancing
charges in the liquid consist of both the compact
double layer referred to as the Stern layer and the
diffuse layer [16]. In order to compute the velocity
profile and the streaming potential in a microchannel,
the electric potential should be evalvated. A slit-like
pore is confined between parallel planes of width 2H,
then dimensionless nonlinear P-B equation governing
the clectric field leads to

3y
3 Y?

= (rdy)’sinh¥ . (12)

Here, the dimensionless potential ¥ denotes ze ¢ /kT

and the inverse Debye length (i.e., inverse EDL
thickness) x is defined by

2 1/2
2n; 4,2 2

i €
e kT (13)

where z; is the valence of type i ions, e the elementary
charge, ¢ the dielectric constant, and kT the Boltzmann
thermal energy. In Equation (13), n;p is the concen-
tration of type 1 ions in the bulk solution, where nip
(1/m3) equals to a product of Avogadro's number and
ionic strength Cy(mM). For low potential of ¥< 1
(i.e., less than kT/e = 25.69 mV) with 1:1 electrolyte,
the P-B equation may be linearized. This linearized
version is well-known as the Debye-Hiickel equation.
Following boundary conditions are presented in a

half of the slit cross-section,

= at 'Y =0 andE

¥ (14)

v,

Once the electric potential profile ¥ (Y) is obtained by
applying the FDM provided in Appendix B, it is
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straightforward to determine the local net charge
density as follows

pe = zie{ny —n_) = —2z;en;,sinh¥ . (15)

4. Computational Practice

For illustrative computations, let us consider a
laminar flow of an aqueous NaCl solution through a
slit-like micropore of inorganic membrane. The half
pore width H is virtually chosen to be 1 pm. The
ionic concentration of 1:1 type electrolyte equals to the
ionic strength of the solution. At room temperature, the
dielectric constant ¢ and the viscosity 7 of the fluid
are taken as 80 (8.854>10™%) Coul/N - m”* and 1.0x
10° kg/m - sec, respectively. The bulk conductivity
with variations of ionic concentrations is chosen from
the literature value [17], as given in Table 1. The
finite difference grids of 1200 are built within the
pore, and the convergence criterion is given as 107
All computations performed on an IBM PC with
Pentium IV processor (1.5 GHz) take less than 2 min.

The inner surfaces of micropore wall have surface
potentials of both ¥'s and ?f\s . It can be assumed
here that the surface potential is identical to the zeta
potential. A decrease of NaCl electrolyte concentration
Cp corresponds to an increase of Debye length ™,
which provides a measure of the range of long-range
electrostatic interactions. The EDL thickness « ~'(nm)
equals to [Cb(M)]'l/2/3.278 for 1:1 type electrolytes.

5. Results
The results of the potential profile can be seen in

Table 1. The Condition of NaCl Aqueous Solution
Environment

lonic strength,

EDL thickness, Bulk conductivity

Cb (mM) £ (nm) (/2 - m)
1.0 9.7 12x107
10" 30.5 14x10°
10”2 96.5 1.6x10®
107 305 1.7x10°

2.0 e 7 T T T T T
""" ¥, =, =10
REREEER X 1
w,=% =20
15} 1
| '~I’s=‘$'s=4.0~

e
n
:

...... :Cp= 10" mM, " = 305 nm ;
r| —— :C,=1.0mM, " =9.7nm N T

dimensionless fluid velocity, V
5

0.0 i 1 1 n L "
0.0 0.2 04 0.6 0.8 1.0

dimensionless pore width, y/H
Fig. 2. Velocity profile in a same charged slit-like
micropore for several solution ionic concentrations (i.e.,

Debye length) as well as surface potentials, where C, =
10° mM and pressure gradient dp/dz is 1.0105 N/’

the previous study [14], where it moves toward the
center region as the surface potential increases. Getting
far from the surface of the pore wall, the potential is
decreased. An increase in the long-range repulsive
screened electrostatic interaction with increasing the
surface potential is more dramatic for lower solution
ionic strength. Given the potential profile, the velocity
profile V(Y) can subsequently be computed by using
Equation (6). The flow situations are verified as a low
Reynolds number condition, that is certainly less than
1. In Fig. 2., the EDL does not exhibit any effects on
the flow pattern for the solution ionic strength of
1.0 mM. However, a dependency of the surface
potential upon the velocity profile can distinctly be
seen for the solution ionic strength of 10° mM. The
average fluid velocity <v> is entirely reduced with the
increase in surface potential as well as the decrease in
solution ionic strength.

The charge condition of the wall surfaces also
affects the velocity profile as given in Fig. 3, owing to
the change of potential profiles. When each of the wall
surfaces has opposite charge, the electrostatic attraction
is experienced. As the electrostatic attraction increases,

Membrane J. Vol. 13, No. 1, 2003
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Fig. 3. Velocity profile in both same and oppositely
charged slit-like micropores for several solution ionic
concentrations (i.e., Debye length) as well as surface
potentials, where C, 10° mM and pressure gradient
dp/dz is 1.0105 N/m’.

the maximum velocity in the center of the pore is
increased. Once each of the wall surfaces has opposite
charge with equivalent magnitude of the potential, then
the velocity profile becomes the Poiseuille flow.

As the

difference between the upstream and the downstream

described  before, charge concentration
results in an induced electrokinetic potential, namely

streaming potential. Therefore, a larger pressure
gradient will generate a larger volume transport, a
higher charge accumulation as well as a stronger
induced electrical field will occur. In Fig. 4, the
field the

potential increases for the given pressure gradient.

induced electrical increases as surface
Also, the induced celectrical field increases with the
decrease in solution ionic strength, due to a larger
EDL thickness. This behavior leads us to understand
the electrokinetic effect on the fluid velocity. In Fig. 5,
the opposite charge generates the opposite streaming
current, which would decrease the net streaming
current through the pore, resulting reduction of the
streaming potential. This is due to a fact that the fluid
increases in accordance with

velocity favorably
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Fig. 4. The variations of induced electrical field E, with
pressure gradient at different solution ionic concentrations
as well as surface potentials, where the slit walls have
same charge.
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Fig. 5. The variations of induced electrical field E, with
pressure gradient at different solution ionic concentrations
as well as surface potentials, where the slit walls have
both same and opposite charges and C, = 10° mM.

increasing of the effect of opposite charge, as shown
in Fig. 3.
Since the electroviscous effect results from the

moving ions in the diffuse layer, the viscosity
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enhancement becomes stronger with the increases of
the Debye length (i.e., a decrease of the solution ionic
strength) as well as the surface potential. The
electroviscous effect becomes weakened for the case of
oppositely charged wall. A reduction of the conduction
current due to the opposite charge gives rise to a

decrease in the electroviscous effect.

6. Conclusions

A micropore analysis of the requisite membrane
characterization problems has been usefully confronted.
The main thrust of the present study is an analysis on
the electrokinetically flow-induced streaming potential
across  slit-like micropores. The additional body force
originated from the presence of the nonlinear P-B
electric field and the flow-induced electrical field was
considered in the equation of motion. Applying the
Green's function formula could derive the expressions
in explicit forms for the velocity profile and the
streaming potential as functions of relevant parameters.

Theoretical results emphasize that the velocity profile
is clearly affected by the EDL for the cases of low
ionic concentrations and high surface potentials, where
the average fluid velocity decreases as the solution
ionic concentration decreases. Since both the EDL and
the induced electrokinetic potential act against the
liquid flow, they result in an enhanced streaming
potential. This study explored the influence of the
surface charge condition upon both the velocity profile
and the streaming potential. Compared to the case of
same charge, the pore walls of opposite charge display
an opposite behavior on the average fluid velocity as
well as the streaming potential.

Appendix A: The Velocity Profile by Green's
Function Formulation

The Green's function G with the differential operator
L can be devoted to V(Y.,t) as follows

oA 7)ol A1) A

54718 459 o% 5249 43
0 3°
LV = 1% = 52 }V
- _ 0P :
= - — EI' sinh(Y) | (A1)

oV

Proceeding by standard techniques, we consider the
Green's function as a linear combination of eigenvalues

and corresponding eigenfunctions @, established as

Y. Y,0 = e oo (v) (@A)

where t is normalized by o dy/ 7, and a convenient
representation for the eigenvalues B, = [(2n-1)7
dh/ZH]z. Utilization of the Dirac delta function with
orthogonal properties leads to the following expression

LGY,Y',H = (Y — YY)D . (A3)

Then, a solution of Equation (Al) subjecting to the
boundary conditions is given by

f Hid,
WY, = fodtf AY' (Y, Y, t—t)

dP
X [ 7 — ElNsinh (Y )J (A4)

The Green's function is explicitly found by using the
separation of variables method, yielding

o (Zﬂ—l)zﬂ'zd’%
_ __h 4H
= 4 Z
X cos ‘(Zn;}?ﬂa’h Y cos ‘(ZMg]_}’)ndh Y . (A5)

A proper solution for velocity profile yields as

WYy,n = dh Z 1mfa’t g A1)

H i
Hld,
xf_H/ dY’ cosV B, Y cosV B, ¥’
P . ,
X [—% — ET';sinh (Y )] . (A6)
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Both integrating and rearranging give the velocity

profile as follows,

E Hldy .
2F1 f_H/d’,dY’ cosV B, Y sinh &

(AT)
which means Equation (6).

Appendix B: Electric Potential by Finite
Difference Scheme

To obtain the solution of Equation (12), taking
five-point central difference method yields the left-hand
side of Equation (12) as

T 2w+ w
(47)*

oy

o Y?

(B1)

where k means the iteration index and the grid index j
=1, 2, ..., N. The ansatz functions on the right-hand
side of Eq. (12) can be linearized as

sinh ¥F = sinh &% + (¥ — ¥)cosh &7 . (B2)
Substituting Equations. (B1) and (B2) into Equation
(12), the finite difference form of the nonlinear P-B

equation becomes as

-t +
(4v)?
2 [sinh &F + (¥ — W) cosh ¥}

(B3)
Then,

g — (2+ (4Y)? k Pcosh &) o + wt]

= (4Y)? k *(sinh ¥* — ¥ cosh ¥?F) . (B4)
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Equation (B4) can be solved for # "' by successive

iterative calculation, using the value of ¥ obtained in
the k-th iteration [18]. A series of algebraic equations

can be expressed as a matrix form, given by

(B5)

£ = [q;-ie-é-l, w«;ﬂ, w-]/?-(-l, %_11, N+1]

(B6)
b7 = [QIF) -, AP, .. ¥,
e QUTRLD, TR — ] (B7)
My 1 0 0
1 M) 1
0 1
A =
1 0
1 M) 1
0 0 1 MF)
(B8)

In Equations (B7) and (B8), the constant potential
boundary condition takes as M(¥) = -2 - (Z]Y)z/c2
cosh® and Q(¥) = (AY) ¢ (sinh¥ - ¥cosh¥).

Acknowledgement
This work was supported by grant No. R01-2001-
000-00411-0 from the Korea Science and Engineering
Foundations and the research fund of the KIST

(2E17460).

Nomenclature

Ch : solution ionic strength [M]
dn : hydraulic diameter [m]
E : dimensionless induced electrokinetic potential,

or streaming potential [-]
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E. : dimensional E {V/m]

e : elementary charge [Coul]

F : body force [N/m’]

H : half pore width [m]

1 : net electrical current [A]

L . electrical conduction current [A]

I : electrical convection current [A]

kT : Boltzmann thermal energy [J]

Nip : concentration of charged ions [1/m3]

P : dimensionless hydraulic pressure [-]

p : hydraulic pressure [N/m’]

Re : Reynolds number [-}

t : dimensionless time [-]

U : reference velocity [m/s]

v : dimensionless fluid velocity [-]

<V> : dimensionless average fluid velocity [-]
v : fluid velocity component [m/s]

W : specified width [m]

Y : non-dimensional lateral (y-) coordinate [-]
Z : non-dimensional axial (z-) coordinate [-]
7 : valence of ion {-]

Greek Letters

Bn : set of eigenvalues [-]

e . dielectric constant [Coul’/J + m]

D . set of eigenfunctions [-]

K . inverse Debye length, or inverse EDL
thickness [1/m]

0 : fluid density [kg/m’]

Q¢ : net charge density [Coul/m3]

7 : fluid viscosity [kg/m - s]

I'1, I'> : non-dimensional parameters [-]

At : total electrical conductivity [1/4£ - m]

v : dimensionless electrostatic potential [-]

¥s . dimensionless electrostatic surface potential
(-]

7, : dimensionless electrostatic surface potential

of opposing wall [-]
¢o : reference electrical potential [V

Mathematical
A : finite difference matrix [-]

HdE AR v 7 FAN ] ARSI fgel o

o MmO

ot

49 45

: finite difference vector [-]
: Green's function [-]

: differential operator [-]

: solution vector [-]

: Dirac delta function [-]
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