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Abstract

The hydrodynamic problem is treated here when a pressurized bag is submerged partially
into water and the end points of it oscillate. SES(Surface Effect Ship)has a bag filled with
pressurized air at the stern in order to prevent the air leakage, and the pitch motion of SES
is largely affected by the hydrodynamic force of the bag. The shape of a bag can be deter-
mined with the pressure difference between inside and outside. Once the hydrodynamic
pressure is given, the shape of a bag can be obtained, however in order to calculate the
hydrodynamic pressure we should know the shape change of the bag, and vice versa.
Therefore the type of boundary condition on the surface of a bag is a moving boundary like
a free surface boundary.

In this paper, the formulation of this problem was done and linearized. The calculation
scheme for the radiation problem of an oscillating bag is shown in comparison with the case
that the bag is treated as rigid body. The hydrodynamic forces are calculated for various
values of the pressure inside the bag and the submerged depth.
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1. Introduction

The SES which is used widely as a high speed
passenger ship has a pressurized bag at the stern
to prevent the air leakage. The stern bag not
only prevent air leakage but also has a large ef-
fect on the pitch motion of the craft. The pitch
motion is affected by side hulls, bow skirt and
the stern bag, but the effect of bow skirt is small
because of the mechanism of it, and that of side
hulls is also small because of a small displacement
in comparison with that of the craft. The pitch
damping due to the stern bag is not all the damp-
ing of the craft of course, but it can be said that
the effect of the stern bag is large enough. The
hydrodynamic problem of the pressurized bag,
however, seems not to be set up yet.

The hydrodynamic problem when a pressurized
bag submerges partially into water and oscillates
has a different nature compared with the problem
of a rigid body. In this paper, this problem is
formulated. On the surface of a bag, the
kinematic boundary condition is not sufficient to
set up the boundary value problem. The reason
is that the shape of a bag can be obtained pro-
vided that the hydrodynamic pressure is given,
however in order to calculate the hydrodynamic
pressure the shape change of the bag should be
known, and vice versa. Therefore on the surface
of the bag, both the dynamic and kinematic
boundary conditions are to be applied. And the
type of the boundary turns into a moving bound-
ary like a free surface boundary. Furthermore the
boundary condition is more complex than that of
a free surface, in which the condition has a
point-wise form, If the pressure changes on a cer-
tain portion of a bag, the whole shape of the bag
changes. Thus the pressure change in one point
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has an effect on the boundary condition in the
whole surface, and the boundary condition can
not be represented as a point-wise form, and
becomes very complex.

A formulation was done in the framework of a
potential theory, under the assumptions that the
mass of the bag is negligible and so does the tan-
gential force variation on the bag, and the bag
has no elongation in the girthwise length. And
the bag is assumed to be fed with a constant
pressure and the air flow in the bag is neglected.
The solution of a static problem was obtained by
iteration method, and the dynamic problem was
solved by using the Green’s identity.

2. Static Problem

In this section, the static problem is treated
when the bag is partially submerged into water.
The assumptions are made so that the mass of
the bag is negligible and the elongation of the
bag is negligible also. Because the most bag are
made of fiber, the above assumptions are reason-
able. Here in this section, the shape of a bag and
its change due to pressure change will be sought
for.

2.1 Shape of a Bag

The shape of a bag is obtained in this section
when the pressure inside and outside of the bag
differ from each other, under the assumption that
the tension is constant along the perimeter of the
bag unless the bag undergoes tangential forces.
The pressure, tension and curvature of a bag are
related by the following Laplace formulal1].

-T
Ph_P—T (1)
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Where P, is the pressure inside the bag and P out-
side. Unless other notation, the pressure is under-
stood as a gage pressure hereafter. T is tensile force
and R the radius of curvature of the bag, where the
sign convention is that R is positive when the origin
of the radius is located toward the inside of the bag.
Let’s introduce one parameter, /, the arc length of
the perimeter along the bag.

d dy v _
(d—’;)2 + (—a,%)2 =1 @

Fig. 1 Coordinate system and the bag

The bag is attached to a structure at the two
points 4 and B. The positions of 4 and B are
represented as (x,, y,) and (xp, yp), the angles 4,, 65,
where the angle is defined as the one between the
positive x-axis and direction tangential to the bag
increasing /. I increases from point 4 to B. The total
length of the perimeter is L. Consider the equation
that represents the shape of a bag. The radius of
curvature is the reciprocal of the derivative of a tan-
gential angle with respect to arc length, so the tan-
gential angle can be written as follows.

0(1)=f; -Ilz—du+04
P,—P
=j;—"T—du+oA 3)

The shape of a bag can be obtained from Eq.(2)
and Eq.(3).

X = j:) cos(&u)du + x ,

y) = ﬂ) sin(@(u))du +y , @

°13F

Once the positions of two points, 4, B, the perimeter
L, and the pressure difference P,— P are given, we
can obtain the shape of the bag from the above
equation. Two unknowns T and 4, (the angle can be
one of 9, and @, here 9, was chosen) should
be obtained from the condition that the point (x(L),
(L)) must be (x5, ys).

In the case that the pressure difference P,~P is
constant along the perimeter of the bag, the shape
of the bag is a circular arc and T, 4, can be easily
obtained, but otherwise it is difficult to obtain a
closed solution so that the numerical method must
be used to do it. The numerical solution is obtained
by using the modified Newton method (2]

Si=x(L)—xp=0
fo=y(L)—yp=0, )
(o HEH S
6)
;AN
£ aT ¢, - ~
AR !
aT 9,
fiimfroolif, S deritly

+(x, +iy ) —(xp+iyg),

where the superscript & means the iteration step,
and the pressure outside is a function of (x(), y())).
The modified Newton method is a modification of a
Newton method in which both the Newton and the
steepest descent method are used. When 1,=0
the method becomes the Newton method, and when
471, the steepest descent method.

Near the true solution the Newton method is very
effective, however in the region little away from
the true solution the convergence of the Newton
method is poor, and sometimes for the initial guess
away from the true solution the iteration does not
converge. So the steepest descent method is
required, which converges slow but confirms a more
convergence and allows a large range of the initial
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guesses. The value ranged from 19, to 109, of the

£/ E) 9 af
largest absolute value of (ai]‘l" -a—il-, ;gl, 3_-22_.)
4 y

was used for A,. The initial guess can be chosen as
follows, from Eq.(3),

1
o5= [ (Py=P) du+g,

=%<Pb~1>> +8,, ®)

where < P,— P> is the mean value along the per-

imeter, If the perimeter L is given we can draw the
circular arc whose end points are point 4 and B, in
such shape ¢, §5 can be chosen as an initial suess.

And the initial guess of tension is from the above
equation. (95 ~4,<2x must be hold)

As the bag moves down, the buoyancy force
becomes larger. If the buoyancy force is greater
than a certain value, the static stability problem can
be arise, and the shape of the bag will be changed
abruptly. Suppose the case that the heights of
points 4 and B are equal. The force equilibrium in
the upward direction is

Pyd—B,,, =T(—sing, +singp),

and in the x —direction,

T(cosf , ~cos ) =0.

If there is no external force in the x-direction, the
angles must satisfy 85=—4, because of the geo-
metrical symmetry. Further if the buoyancy B,,,
becomes larger and reaches P, - d, the angle will be
6,=—n from the force equilibrium in the upward
direction. At this moment, if the extermal force in
the x-direction is given infinitesimally, 4, 65 will be
changed by an amount of positive Ag. Then the
force in the x-direction will be

T(cos(8, +A8) —cos8, —cos@g + Af) +cos 85
=T(-sin g, +sindp)A8,
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in which the force equals to zero if 9, = —n. That is,
there is no restoring force in x-direction. And if 9,<
—m, the restoring becomes negative, and static in-
stahility takes place.

If we want to analyze the problem of the case
B,,,> Py, - d, the wall is needed to block the ‘fling
around’ of the bag. This static instability has an ef-
fect on Eq.(6) to calculate the shape of a bag. So if
it seems that the static instability will be arise,
under-relaxation of AT, Ag, is recommended.

2.2 Shape Change due to Pressure Change

Suppose that the shape of the bag and tensile
force are given. The shape and tension will be
changed if the pressure changes in a certain
portion of the bag. If the solution will be sought
by using the prescribed method when the press-
ure 1s changed, the computational burden will be
larger because the iteration must be performed at
each case. If we want to solve non-linear prob-
lem, the prescribed method has to be used.
When, however, the amount of the pressure
change is small, the linearization of the problem
is useful.

Let’s see the changes of T and ¢, due to the
pressure change. The point (x(L), y(L)) must be(xp,

yg) even if the pressure changes.
X(L) —Xg~ 0
y(L)~yp=0,

in which x(L), y(L) are the functions of P,T and ¢,.
The differentials of the above equations are

2x(L) ypy2XL) yp 2x(L) Lo
aT 20, 1

aP
ay(L) ay(L) ay(L) _
Sp AP +o s dT + %, dg, =0 9

From the above equations, we can obtain 7" and
da, as follows,

ax(L) ax(L) ax(L) d

aT -1 ap P
(4T j= - " 10)
de, av(L) ay(L) ay{L) dp

aT 20, ap
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Eq.(9) and Eq.(10) were written formally, it is not so
simple because dp is a function of /. Let’s represent
the equations more precisely. Because dp(l) is a
function, x(!), y(!) are functionals, so the derivatives
of functionals with respect to a function can be
obtained in distribution sense. The shape changes
due to dp(D) can be obtained by looking for the
changes due to the pressure change by an amount
of &0(/—5) at one point /=5, and multiplying the
amplitude of pressure change dp(s), and by
integrating them from O to L,

QX(L)p =p +epdli—s)

3—X(L)—dp—J - dp (s)ds.

[} 5,—0 9a:p

For y(L), the same scheme can be used. And from
Eq.(3) and Eq.(4),

p

=J‘L {J'l e:[— oy —pMu+8 ] (o i J"—&(u—s)du)dv}
0o Jo 0
dp(s)ds
=fL {j'l ei[—}*j:]((Pb‘P’d"+”A]:7,;dv} - dp{s)ds. (11)
0 Js

The partial differentials with respect to T and 4,

can be written as follows using Eq. (3), (4).

a(x l)+t (0] __J" el 1 ! ((pp=p(w)hdu+0 4]

if? (P,,—P(undu(—le—) dv

(D) +iy(D)) __

30A

((pb —p(u))du+8 4] idv.

(12)

Because x(/), y(/) are the functions of p, T, 6,, the
change of the bag’s shape becomes

dx(l)‘—(—a—x—dT+ d9A+ dp),

dy (1) ~(—1—dT + —-LdoA + -Ldp)

olF

The third term in the above equation would be
sought as explained above. The above equations can
be written by using the result of Eq.(10).

ax(L) ax(L)

“or a8,
dx———d (2X 2x
P 9T %, az( ap(L)
30,4
ax(L)
{ % dp} L4 (13)
=L, - dp,
ay(L dp x
cox(L) ax(L) 4~
28
Y g 2V 3V A
oy 5T 26, } asz 22(L)J

%,

2x(L)

ap ap _

=L, - dp,
ay(L) d

ap P

where L,, L, are the linear operators.

3. Formulation

The boundary condition on the surface of a
rigid body is well known and simple, but on the
surface of a flexible body, like a pressurized bag,
the boundary condition has a complicated nature,
The hydrodynamic pressure makes the bag
change its shape, and the change of a bag makes
the hydrodynamic pressure changed, and vice
versa. So the boundary type is a moving bound-
ary like free surface boundary, and both dynamic
and kinematic conditions must be applied.

3.1 Linear Radiation Problem

Let’s formulate the problem when the end
points of a bag oscillate. As the end points move,
the bag tend to move like a rigid body, but the
bag actually cannot move as a rigid body because
the pressure outside varies and the surface of the
bag deforms. Denote the displacement of the bag
from the static equilibrium position as dx, dy, and
the displacement of a rigid body which has the
same shape with the bag as dX;, d¥;. When the

end points move, the displacement of the surface is
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related with the dynamic condition.
p=—pgy—p¢, for y<0.

The displacement of the surface of the bag
consits of two factors:the effect of the movement of
the end points, and the one due to pressure changes,

dyzLy . dp+dYE
—pgL, -dy—pL, - dp,+dYg
dy=[I+pgL) 17\ [—pLy - dp,+dY g, 14)

in which 7 is an identity operator and Lf 1s an oper-
ator which is reduced from L, by ignoring the part
of y>0. Similarly dx can be obtained as follows,

dx=L,-dp+dXy
= —pgLy dy—pL dé,+dX
=—pLy I+pgL) ) 'dg,
—pgL} I+ pgLy 1 7dY p+dXp. (15)

Only the portion y<0 is required to solve the bound-
ary value problem. Examining the above two
equations closely, we know that the portion y>0
has no effect on the portion y<0 because the press-
ure remains constant over the portion y>0. Thus
we can rewrite the equations only for y<0.

dx* = —pL [I+pgL 17 dg,—pgL, [I+pgL,]™!
dYy + dX%
dy* =11+ pgL, 17! [—pL,dg, +dY ; ], (16)

where L,, L, are L, L, defined only on the portion

y<0. Explaining the operators L™, L using Eq.(11)
and Eq.(13). L* is the operator in which dp has a
value for y<0 and zero for y>0, and L performs
the operation only for y<0 among the operation of
L*.

The kinematic condition is the condition that the
normal component of the velocity of a bag’s surface
must be the same as the normal component of the
fluid velocity. Thus,
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¢n =Vn '—;’ =nxx;* +nyy;*
=n,Xg,+[n,—npgl,] U+pgL,)7! Y,
—lnpL 1+ pgL, )™ +n pll +pgl, 17 L 14,
=n X5 +C, Y5 —Cey,. an

where

C, =ln, —npgL )1+ pgL, ]!
Cy=InpL, I +pgl, 17! +n,p U+pgL,] 'L,

As shown above, the boundary condition can be
represented not point-wisely but globally.

The boundary value problem is summarized as
follows.

¥ 24=0 in fluid domain
¢, +1/gd,=0ony=0 (18)
¢, +Chy, ="xXZr +CyYZr

on the Surface of the bag,

and appropriate radiation condition. Once the sol-
ution of the above problem is obtained, we can cal-
culate the pressure on the surface of the bag.

dp = — pgdy — pdg,
=—plI+pgL,} ! {gdY c +dg,} for y<0. 19

The first term of the above equation is static press-
ure and the second term is hydrodynamic pressure.
Substituting the above equation into Eq.(13), we
can obtain the shape change of the bag, and into
Eq.(10), the tension and 4,. The change of @z can
be calculated by differentiating Eq.(3) and substi-
tuting Eq.(10) into this resulting equation.

The dynamic force acting on the point A4 is, in
x-direction

fo =(T+dT) COS(GA +d9A)“T cos 8,4
= TSln BA dGA +C(E0‘4dT, (20)

and in y-direction
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S,4=(T+dT) sinlg, +dg,)—T sin 4,
=— T cos 8, df, +sing,dT, 21)

The force on the point B can be calculated similarly,
and so the heave, sway, and roll force on a bag is
obtained.

3.2 Numerical Impiementation
The boundary value problem is solved using
Green’s identity

#(P=| (G.g(P. OW(Q)~G(P, 0)4,(@)1dS(Q),

where P is the field point and Q source point, and
G(P, Q) is the fundamental solution of Laplace
equation which satisfies the free surface boundary
condition.[3] Discretizing the surface submerged, as-
suming that the values of ¢, ¢, are constant over
each segment and equal to the values at midpoint,
and performing integration over each segment ana-
Iytically, the above equation becomes the matrix
equation below.

8 =1G,li¢} —[Glg,} 22)

Suppose the case of time harmonic motion. Substi-
tuting the boundary condition into the above
equation results in

[I=~G,+o? GCiph=—[Gln X5 +C Y ) (23)

After discretization, the operator Cy4, C, turn into
matrices and #,, n, diagonal matrices. Once the sol-
ution of the above equation is found, the pressure
on the surface of a bag can be calculated by Eq.
(19).

4. Numerical Results

All calculations were carried cut with single
precision on the 1386 based PC. The total length
of the perimeter of a bag was divided into 100
elements. And nondimensionalization is as

ol 3%

follows :perimeter length L/d, submerged depth
depth/d, volume inside V= V[d?, submerged area A”
= A/d?, pressure inside P’=P,/pgd, tension T =

T/pd. frequency wN g/d, added mass a/pd?, damp-

ing coefficient b/pd™/ g/d.

In Fig.2, the shapes of a bag with various sub-
merged depth are shown. The submerged depth is
defined such that the depth is zero when the bag
touches the free surface and then the depth is de-
fined as the length the point A goes down. As be-
ing expected, the bag is more flexible as the press-
ure inside the bag becomes smaller.

In Fig.3, the static properties are shown. As the
depth grows, the volume inside the bag decreases,
angle increases and the tension decreases. The angle
must have the value less than = in this scheme, so
the depth cannot become larger than the value
shown in figure.

In Fig.4, the restoring force is shown in compari-
son with the rigid body case. Restoring ratio ‘1’
means that the restoring of a bag is the same with
the restoring of the rigid body which has the same
shape with the bag. The restoring ratio decreases as
the pressure decreases and the depth increases.

In Fig.5 through Fig.8, the added mass and
damping of a bag are shown. In calculation of the
hydrodynamic forces, the forces are obtained by
direct integration of the hydrodynamic pressure
on the surface of the bag, because the force di-
rectly integrated and by Eq.(20) have the same
value, and there is some kind of numerical error
in the force from Eq.(20). The added mass of a

bag is so small except in low frequency region,
and in some region becomes negative. There are
many cases in which the negative added mass
comes out, such as in restricted water, near the
wall, and in the motion of multi-body. So this
negative added mass is not surprising and the ter-
minology, the ‘added’ mass, is not appropriate in
those cases. When the pressure is high, the
damping is close to that of rigid body, but as the
pressure decreases, it decreases except in low fre-
quency sway mode and have a different behavior,
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Fig. 2 The Shape of a bag with various submerged depths
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Fig. 3 The static properties of a bag.(p’ pressure
inside a bag, V' volume inside a bag, A’ sub-
merged area, T'tension All are nondimensional
value.)
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Figd The restoring force of a bag, non-
dimensionalized with the restoring force of the
rigid body which is the same in shape
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Fig. 6 Added mass and damping of a bag when the non-dimensionalized pressure is 0.7
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Fig. 7 Added mass and damping of a bag when the non-dimensionalized pressure is 0.5

As seen in Eq.(23), the added mass and damp- Therefore if added mass or damping has non-zero
ing vanishes as the frequency goes infinity. value at infinite frequency, the force at infinite fre-
The hydrodynamic force can be represented as quency also has an infinite value. So in the case of
follows with added mass and damping, non-zero added mass or damping at infinite fre-
quency, the body must give infinite energy to a

Force= —ofa+iwb fluid to maintain oscillation at infinite frequency.
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Fig. 8 Added mass and damping of a bag when
the non-dimensionalized pressure is (0.3

This is the case of a rigid body. But the bag has a
different mechanism with a rigid body. The press-
ure acting on a fluid is limited and this may be sev-
eral times of the pressure inside a bag. Even if it
may have a large value, the pressure and the force
are limited by a certain finite value. Thus the added
mass and damping cannot have a non-zero value at
infinite frequency, and decrease to zero as the fre-
quency increases to infinity.

5. Conclusions

In this paper, the hydrodynamic problem was
treated when a bag filled with pressurized air
submerges partially into water and the end points
of it oscillate. Different from the rigid body case,
this problem has some distinct nature:both the

-
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kinematic and dynamic conditions are required
for the boundary condition on the surface of a
bag because the surface of a bag can be deformed
easily by the pressure acting on it, and the
boundary condition is represented not locally but
globally.

In this paper, this problem was formulated and
the numerical calculation were carried out.
Through this work, the following conclusions are
drawn,

The boundary condition on the bag is mixed
type and represented globally,

The restoring force, the static force, becomes
smaller than that of rigid body as the pressure in-
side goes down or the submerged depth bcomes
larger.

In the low frequency region, the added mass
and damping of a bag have values close to those
of rigid body. As the frequency becomes large
they have the different behavior compared with
those of rigid body, and the added mass becomes
negative in some high frequency region. And the
added mass and damping vanish as the frequency
goes infinity,

The added mass and damping are smaller than
those of rigid body except sway damping at low
frequency.

Author hopes that the further study will be
taken including the compressibility of the air, the
wall to block ‘fling around’ of the bag and a for-
ward speed effect,
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