DOI QR코드

DOI QR Code

Numerical Study on Wave-induced Motion of Offshore Structures Using Cartesian-grid based Flow Simulation Method

직교 격자계 기반 유동해석기법을 이용한 파랑 중 해양구조물의 운동 해석

  • 남보우 (한국해양과학기술원 해양플랜트연구부) ;
  • 김용환 (서울대학교 산업조선공학부) ;
  • 양경규 (서울대학교 산업조선공학부) ;
  • 홍사영 (한국해양과학기술원 해양플랜트연구부) ;
  • 성홍근 (한국해양과학기술원 해양플랜트연구부)
  • Received : 2012.09.06
  • Accepted : 2012.12.11
  • Published : 2012.12.31

Abstract

This paper presents a numerical study of the wave loads acting on offshore structures using a Cartesian-grid-based flow simulation method. Finite volume discretization with a volume-of-fluid (VOF) method is adopted to solve two-phase Navier-Stokes equations. Among the many variations of the VOF method, the CICSAM scheme is applied. The body boundary conditions are satisfied using a porosity function, and wave generation is carried out by using transient (wave or damping) zone approaches. In order to validate the present numerical method, three different basic offshore structures, including a sphere, Pinkster barge, and Wigley model, are numerically investigated. First, diffraction and radiation problems are solved using the present numerical method. The wave exciting and drift forces from the diffraction problems are compared with potential-based solutions. The added mass and wave damping forces from the radiation problems are also compared with the potential results. Next, the wave-induced motion responses of the structures are calculated and compared with the existing experimental data. The comparison results are fairly good, showing the validity of the present numerical method.

Keywords

References

  1. Nam, B.W., Hong, S.Y., Kim, Y., 2010. Numerical Simulation of Wave Forces acting on Fixed Offshore Structures Using a Hybrid Scheme. Journal of Ocean Engineering and Technology, 24(6), 1-7.
  2. Ferziger, J.H., Peric, M., 2002. Computational Methods for Fluid Dynamics. Springer-Verlag, Heidelberg.
  3. Journee, J.M.J., 1992. Experiments and Calculations on 4 Wigley Hull Forms in Head Waves. Report0909, Delft University of Technology.
  4. Hu, C., Kashiwagi, M., 2007. Numerical and Experimental Studies on Three-Dimensional Water on Deck with a Modified Wigley Model. Proceedings of 9th International Conference on Numerical Ship Hydrodynamics, Ann Arbor, Michigan.
  5. Kim, J.W., Kyoung, J.H., Ertekin, R.C., Bai, K.J., 2003. Wave Diffraction of Steep Waves by Bottom-mounted Vertical Cylinders. Proceedings of 22th OMAE, Canvun.
  6. Pinkster, J.A., 1976. Low Frequency Second Order Wave Forces on Vessels Moored at Sea. Proc. 11th Symp. Naval Hydrodyn..
  7. Ubbink, O., Issa, R.I., 1999. A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes. Journal of Computational Physics, 153, 26-50. https://doi.org/10.1006/jcph.1999.6276

Cited by

  1. Numerical Prediction of Ship Motions in Wave using RANS Method vol.50, pp.4, 2013, https://doi.org/10.3744/SNAK.2013.50.4.232
  2. A VOLUME OF FLUID METHOD FOR FREE SURFACE FLOWS AROUND SHIP HULLS vol.20, pp.1, 2015, https://doi.org/10.6112/kscfe.2015.20.1.057