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Abstract 
 

At present, most efforts tend to develop a INS which is only based linear accelerometers, because of the low cost 
micro-machining gyroscopes lack of the accuracy needed for precise navigation application and possible achieving 
the required levels of precise for micro-machining accelerometer. 

Although it was known in theory that a minimum of six accelerometers are required for a complete description of a 
rigid body motion, and any configuration of six accelerometers (except for a “measure zero ” set of six-accelero-
meter schemes) will work.  

Studies on the feasible configuration of GF-INS indicate that the errors of angular velocity resolved from the six 
accelerometers scheme are diverged with time or have multi solutions. The angular velocity errors are induced by the 
biases together with the position vectors of the accelerometers, therefore, in order to treat with the problem just 
mentioned, researchers have been doing many efforts, such as the extra three accelerometers or the magnetometers 
may be taken as the reference information, the extended Kalman filter (EKF) involved to make the angular velocity 
errors bound and be estimated, and so on. 

In this paper, the typical configurations of GF-INS are introduced; for each type GF-INS described, the solutions to 
the angular velocity and the specific force are derived and the characteristic is indicated; one of the corresponding 
extend Kalman filters are introduced to estimate the angular errors; parts of the simulation results are presented to 
verify the validity of the equations of angular velocity and specific force and the performance of extend Kalman filter. 
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1. Introduction 
 

  In general, most of inertial navigation systems use 
accelerometers to sense linear acceleration and gyroscope to 
sense angular velocity. But at present, most efforts tend to 
develop a INS which is based only linear accelerometers, 
because of the low cost micro-machining gyroscopes lack of the 
accuracy needed for precise navigation application and 
impossible achieving the required levels of precise in the near 
future, the fundamental physical constraints inhibit the precision 
of micro-machining accelerometer being less than that of 
gyroscopes and the cost more affordable. 

Although it was known in theory that a minimum of six 
accelerometers are required for a complete description of a rigid 
body motion, six-accelerometer schemes were not realized until 
a cube type GF-INS was proposed by J. Chen. In fact, except for 
a “measure zero ” set of six-accelerometer schemes, any other 
configuration of six accelerometers will work. They all have the 
same computational simplicity as the cube type GF-IMU.  

Studies on the feasible configuration of GF-INS indicate that 
the errors of angular velocity resolved from the six 
accelerometers scheme are diverged with time or have multi 
solutions. The angular velocity errors are induced by the biases 
together with the position vectors of the accelerometers, 
therefore, most work is on the scheme of gyroscope-free inertial 
navigation system in order to treat with the problem just 
mentioned. The extra three accelerometers or the magnetometers 
may be involved and taken as the observation to make the 
angular velocity errors bound and be estimated. 
   It is known that the standard Kalman filter provides an 
optimal or minimum error estimate of the state vector of linear 
system in the case of both the system noise and the measurement 
noise being zero-mean and white, i.e. Gauss process. Because the 

differential equation of angular and linear velocity is nonlinear, 
the extended Kalman filter (EKF) will be involved to estimate 
the angular velocity errors. The EKF is the optimal least squares 
estimators for the system described by the nonlinear state-space 
model and well adaptive to our problem. 

In this paper, the typical configurations of GF-INS are 
introduced; for each type GF-INS described, the solutions to the 
angular velocity and the specific force are derived and the 
characteristic is indicated; one of the corresponding extend 
Kalman filters are introduced to estimate the angular errors; parts 
of the simulation results are presented to verify the validity of the 
equations of angular velocity and specific force and the 
performance of extend Kalman filter. 

 
2. Cube-Type GF-INS Presented by J. Chen  
 

The scheme includes six accelerometers placed respectively at 
the center of each of the six cube faces, and its sensing direction 
along the respective cube face diagonal form a regular 
tetrahedron, the extra three orthogonal accelerometers are 
involved and placed at the center of the cube, and taken as the 
observation to estimate and bound the angular velocity error, as 
shown in Fig. 1.  

 
(1) Angular velocity differential equation and the centroid 

specific force[1].  
It is known by above that the angular velocity differential 

equation is linear and the specific force equation non-linear to 
the angular velocity, described as follow: 
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Fig1. Cube-type GF-INS (nine-accelerometer) 
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The angular velocity b
ibω will diverge rapidly in the case

 of the accelerometer biases and noises being considered. 
             

(2) Angular velocity observation and estimation 
The extra three accelerometers at the center of cube are involved 
to measure the centroid specific force and make the observation 
equation based on the left side of equation (2) being replaced by 
the outputs of the extra three accelerometers, the principle of the 

estimation ˆ b
ibω  is shown in Fig.2. 
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Fig. 2. Estimation of angular velocity b

ibω  

 
The discrete-time forms of the angular velocity equation a

nd observation equation are as follow:  
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Here the ( )w k and ( )v k are with the power spectral 

densities Q and R . The angular velocity estimate algorithm is 
stated as:  
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In the case of the reference angular velocity and the specific 
force, the angular velocity solved by conventional method and 
involving extra accelerometers are shown as the following 
Figures[1]: 

 

 
Fig. 3. Angular velocity estimation with 

same initial conditions 

 
Fig. 4. Angular velocity estimation with  

same initial mismatches 
 



 

 

 

 
Fig. 5. Angular velocity estimation with  

biased accelerometers 
 

3. Six Accelerometers on the Unit Sphere 
Presented by Hsin-Yuan Chen  

 
The six accelerometers are positioned at the unit sphere, the 

sensing direction is shown as Fig.6. 
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Fig. 6. Scheme of six accelerometers on the unit sphere 

 
When the installation errors are neglected, there are the f

ollowing: 
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Substituting r andθ  given above, the relations of angular 

velocity and specific force with the accelerometer outputs may 
be get as the equations (13) and (14): 
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It is can be known that the angular velocity error is bounded, 

but the angular velocity has the multiple values and the solutions. 
In order to determine the sign of the angular velocity in (13), 

the magnetometer measurements of angular velocity may be 
involved and located at the center of the sphere, the angular 
velocity used to the strapdown navigation algorithm may be the 
absolute value solved by (13) and with the same sign as that of 
magnetometer outputs. The magnetometer measurement equation 
is:  
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For the given conditions: 1l = , A%  taken the random 
values within 0 and 1, the linear accelerometer errors and the 
angular velocity errors are convergent and shown in Fig. 7[2] . 
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Fig.7 Linear acceleration error and angular velocity error 
 

4. Nine Accelerometers Paralleling to the  
Frame Axes Presented by Wang Qi  

  
  In this scheme, the nine accelerometers are placed as 
shown in Fig. 8.  
 

 
Fig.8. Nine accelerometers paralleling to the frame axis 

 
It is convenient to mount the accelerometers for this 

configuration, but the angular velocity no longer linear to the 
outputs of the accelerometers. Six of accelerometers are 
respectively placed at the three axes and three at the original 
point of the frame. The angular velocity and the specific force 
calculated by the six accelerometers from the original (i.e. at the 
three axes) are described by the equations (16) and (17).      
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Both the angular velocity differential equation and the specific 
force of the original are non-linear. The outputs of three 
accelerometers positioned at the original are taken as the 
measurement to estimate the angular velocity then the 
measurement equation may be: 

a1 a2 ˆb
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Giving the simulation conditions: b
ibxω and b

ibyω  being 

period functions, b
ibzω quadric function, b

cf  period functions 
with two periods, accelerometer biases neglected, then the 
angular velocity errors are shown in Fig. 9. 
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Fig.9  Angular velocity errors 
 

It is obvious that the angular velocity errors will diverge with 
time in the case of accelerometer biases considered because of 
integration, so the extra three accelerometers (at the coordinate 
original) are involved and be taken as the measurement to 

guarantee the estimate of b
ibω bounded. 

 
5. One of the Extended Kalman 

Filter Algorithm 
 



For the non-linear angular velocity differential equation, the 
Extended Kalman Filter (EKF) is required, one of the 
recommendatory method is stated by the following. 

Assuming that the general discrete non-linear system is 
presented by:  
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where 1kf − and kh  are nonlinear function of 1kx − and kx  , 

1kw − and kv are zero-mean Gaussian white noise sequences 

with covariances R and Q , 0x  is a Gaussian  vector with a 

constant mean value and initial covariance matrix 0P . Let 0
kx  

is the ideal value corresponding to the real state kx , and 
0

k k kx x x∆ = − , 0( )k k k kz z h x∆ = − , then the 
linearization equations of  (18) and (19) are: 
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Then the estimate of kx  is 
0ˆ ˆk k kx x x= ∆ +                          (24) 

Taking the system stated by formula (16) and (17) for example, 
when the linearization has been done, the EKF above may be 
used to estimate the angular velocity. 

It is should be indicated that the method just mentioned above 
only suited to the less filter error and the one-step predict error, 
otherwise the additional estimate algorithm must be investigated. 

 
6.  Conclusion 
 
The scheme of accelerometer configurations are not unique to 

get the angular velocity of body frame relative inertial frame and 
may be solved only by six accelerometers allocated from the 
centroid, but the calculation error is unavoidable diverged 
rapidly with time. In order to bound the calculation error of 
angular velocity error, the measurement must be introduced, for 
example, the magnetometer. Because of the non-linear angular 
velocity differential equation, the extend Kalman filter is 
required. The linearized differential equation discussed above 
corresponds to the smaller error angular and invalids for the case 
of larger error angular, additional estimate algorithm should be 
investigated in the near future work.   
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