• Title/Summary/Keyword: Body surface scan

Search Result 70, Processing Time 0.027 seconds

A Study on Development of Men's Formal Jacket Pattern by 3D Human Body Scan Data -A Focus on Men's in their Late 30s- (3D 인체데이터를 활용한 남성 정장재킷 패턴개발 연구 -30대 후반 남성을 중심으로-)

  • Shin, Kyung-hee;Suh, Chuyeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.3
    • /
    • pp.440-458
    • /
    • 2019
  • Based on a 3D body data and pattern comparison analysis, this study developed a formal jacket pattern for men in their late 30s. In order to select the representative type of men in their late 30s, factor analysis and cluster analysis were conducted on data form 319 men, 35 to 39 years old using the anthropometric data from The 7th Size Korea (2015) as the representative body type. The surface of the body surface was developed using a 3D human shape of a male in his 30s in The 6th Size Korea (2010). Then the shape was changed to a flat pattern that confirmed the necessary elements for setting the shape and dimension. Cluster analysis revealed type B as the representative type because it showed the best shape characteristics for men in the late 30s. The drafting method of the final research pattern is as follows. Jacket length: stature/2.5cm, back length: stature/5+8.5cm (constant)], armhole depth: [stature/ 7-1.5cm (constant)], back width: [C/9+9.5cm (constant)]+1cm (ease), front width: [C/9+8.5cm (constant)]+1cm (ease), armscye depth: C/8, front waist darts: 1cm, front closure amount: 2cm.

An analysis on the Fit Preferences of Breeches using 3D Lower Body Scan data (3차원 하반신 스캔데이터를 이용한 승마바지의 맞음새 분석)

  • Kang, Mi-Jung;Kwon, Young-Ah
    • Fashion & Textile Research Journal
    • /
    • v.15 no.6
    • /
    • pp.1000-1009
    • /
    • 2013
  • Well-fitting riding breeches provide a comfortable ride. Horse-riding breeches should fit the lower body with patches located on the inside of hip and knees to prevent tears and slips. This study provides information about the fit of women's breeches using 3D human body scan data wearing commercially available two breeches according to posture. To get information about breeches fit, we measured the angle of waist line, the length, and the area of the breeches fit on four 20's women. This research showed the problem which was down for waist back line in the case of the horseback riding pose. The back waistline of the riding breeches should be raised compared to the front waistline; subsequently, an increased waistline angle results in less back waistline decrease. The breeches have plenty of length from back waist to crotch so the breech fit can be improved. The thigh circumference increased when riding in the front; therefore, good elasticity of the weft direction of the fabric is recommended. The length increase and the peripheral increase of the front knee significantly increased the surface area of the knee; consequently, knee patch material should be a two-way elastic fabric in all directions to enhance comfort according to riding motion.

Torso Pattern Design for Korean Middle-Aged Women using 3D Human Body Scan Data (차원 인체 스캔 데이터를 활용한 한국 중년여성 토르소 원형 설계)

  • Kim, Hye-Jin;Park, Soon-Jee
    • Fashion & Textile Research Journal
    • /
    • v.13 no.4
    • /
    • pp.600-613
    • /
    • 2011
  • The purpose of this study is to provide Torso pattern for Korean middle-aged women using 3D human body scan data. 155 women in their 40's or 50's were measured by Martin's anthropometry. Merging the data of 914 middle aged women provided by Korean agency for technology and standards, total of 1,069 subjects' data were analyzed. For data analysis, ANOVA, factor analysis and cluster analysis were done using SPSS PC+. And representative subject of each cluster was selected and they participated in 3D scanning and Torso pattern suggested for middle-aged women Torso pattern which investing the amount of ease according to each group for diffuse front interscye 30%, armscye circumference 30%, back interscye 40% using 3D human body scan data. The results of this study are as follows. Firstly, as a result of the factor analysis, the first factor was 'obesity index of body', The second factor was 'verticality size of body', The third factor was 'verticality length of upper bodice', The fourth factor was 'drop value to represent silhouette', and the fifth factor was 'physique of upper bodice'. And, middle-aged women type were classified 3 types according to the cluster analysis. Type 1(Y-type) was the long upper Torso with wide shoulder. Type 2(H-type) was flat-body type with comparatively thin upper bodice and thin lower bodice. And type 3(A-type) was the obese type with comparatively thin upper bodice and fat lower bodice. Secondly, using CAD program, point filtering was performed and approximated surface model was made. It used that generated surface smoothing corrected for abnormally extruded points and scattered points based on the curvature information. And 3D surfaces were flatted onto the plane by the internal tools of CAD program. Difference ratios of outline length and area between 3D curves and 2D plane were 0.42% and 0.54%, respectively. Third, wearing test by the sensory evaluation showed that distinct difference almost every category. The movement functionality test shows that, in all the tests which reveal significant differences, especially, 'comparison pattern A' experienced inconvenience to neck width and neck depth.

Application Two-Dimensional Pattern Development of Cycling Tights based on the Three-Dimensional Body Scan Data of High School Male Cyclist

  • Park, Hyunjeong;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.595-606
    • /
    • 2020
  • This study develops an optimal two-dimensional (2D) pattern from three-dimensional human scan data by considering the cycling posture and dermatome of high school male cyclists. By analyzing the body surface change in the cycling posture and considering the dermatome of the lower limbs, the optimal cutting line setting and the development of cycling tights for individual cyclists were presented to provide data that could be used in the clothing industry. We designed three cycling tights to solve the size unsuitability. 3D design 1 is a non-extension design based on the analysis of the 3D human body scan data, in which parts were connected diagonally from the front of the knee to the back of the knee. 3D design 2 removed both the front and back to reduce air resistance during cycling. 3D design 3 did not have a cutting line on the front panel because of the air resistance during cycling in the front area. We analyzed the garment pressure for 8 points of lower body and performed a subjective evaluation of the 3D designed tights and the current cycling tights. The 3D design 1 in this study was well received in the omphalion, thigh, and hip area, while 3D design 3 was well received in the omphalion, thigh, hip, and bottom bands. Therefore, the LoNE of 3D design 1 was applied to the front, and the hip cutting line of 3D design 3 was applied to the back.

2D Lower Body Flat Pattern of the Women in Their Twenties Using 3D Scan Data (3차원 인체 형상을 이용한 20대 여성의 하반신 전개패턴에 관한 연구)

  • Yoon, Mi-Kyung;Nam, Yun-Ja;Choi, Kyeng-Mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.5 s.164
    • /
    • pp.692-704
    • /
    • 2007
  • Recently, Basic patterns with excellent body fitness and automation availability are required to be developed in order to automate the patterns of women's clothes. In this study, this reference points, reference lines and segments were fixed onto 3D scan data for the lower body the women in their twenties, they were directly spread out to be 2D flat pattern to facilitate development into the design of slacks adhered closely to the human body such as special and highly-functional clothes, and then slacks 2D pattern was developed for the purpose of seeking scientific approach to the development into basic form slacks and 3d emotional pattern. For conversion of 3D pattern into 2D flat pattern, reference points and segments were created by using Rapid Form of 3D shape analysis software, and triangle mesh of the body surface of the created shape was developed with Auto CAD 2005. The correspondence between slacks and human body was examined by the fixation of major reference lines. Specially, the wearing characteristics of slacks were considered by the fixation of side lines in consideration of posture. As a result of using the way of development to constantly maintain the length while 3D triangle mesh is converted into 2D flat mesh, the shape was shown to be excellently reproduced, and the area of flat pattern was increased compared to the shape of parting plane. Also, the sunk-in curve like the brief line of front crotch length needed a cutting line when it was closely adhered, when mesh was overlapped, and the pattern area was smaller compared to the actual shape.

Human Limbs Modeling from 3D Scan Data (3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원)

  • Hyeon, Dae-Eun;Yun, Seung-Hyeon;Kim, Myeong-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a new approach for modeling human limbs shape from 3D scan data. Based on the cylindrical structure of limbs, the overall shape is approximated with a set of ellipsoids through ellipsoid fitting and interpolation of fit-ellipsoids. Then, the smooth domain surface representing the coarse shape is generated as the envelope surface of ellipsoidal sweep, and the fine details are reconstructed by constructing parametric displacement function on the domain surface. For fast calculation, the envelope surface is approximated with ellipse sweep surface, and points on the reconstructed surface are mapped onto the corresponding ellipsoid. We demonstrate the effectiveness of our approach for skeleton-driven body deformation.

  • PDF

Comparison of accuracy between digital and conventional implant impressions: two and three dimensional evaluations

  • Bi, Chuang;Wang, Xingyu;Tian, Fangfang;Qu, Zhe;Zhao, Jiaming
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.236-249
    • /
    • 2022
  • PURPOSE. The present study compared the accuracy between digital and conventional implant impressions. MATERIALS AND METHODS. The experimental models were divided into six groups depending on the implant location and the scanning span. Digital impressions were captured using the intraoral optical scanner TRIOS (3Shape, Copenhagen, Denmark). Conventional impressions were taken with the monophase impression material based on addition-cured silicones, Honigum-Mono (DMG, Hamburg, Germany). A high-precision laboratory scanner D900 (3Shape, Copenhagen, Denmark) was used to obtain digital data of resin models and stone casts. Surface tessellation language (STL) datasets from scanner were imported into the analysis software Geomagic Qualify 14 (3D Systems, Rock Hill, SC, USA), and scan body deviations were determined through two-dimensional and three-dimensional analyses. Each scan body was measured five times. The Sidak t test was used to analyze the experimental data. RESULTS. Implant position and scanning distance affected the impression accuracy. For a unilateral arch implant and the mandible models with two implants, no significant difference was observed in the accuracy between the digital and conventional implant impressions on scan bodies; however, the corresponding differences for trans-arch implants and mandible with six implants were extremely significant (P<.001). CONCLUSION. For short-span scanning, the accuracy of digital and conventional implant impressions did not differ significantly. For long-span scanning, the precision of digital impressions was significantly inferior to that of the traditional impressions.

A Study of the Patternmaking Methods for Mass Customization of the Men's Jacket (남성복 재킷의 Mass Customization을 위한 패턴 제작 방법 연구)

  • Oh, Seol-Young;Chun, Jong-Suk;Suh, Dong-Ae
    • The Research Journal of the Costume Culture
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2006
  • Three-dimensional body scanners were used for years in the clothing manufacturing fields. The 3D body surface provide essential data to draft patterns for mass customization, virtual fit model, and computerized patternmaking systems. This research proposed the methods of drafting patterns for men's jacket by using three dimensional body scan data. Eight male subjects were scanned, the surface data was flattened. The differentials of the flattened body surface and the jacket draft were measured, and analyzed the regressions. To verify the fit of the patterns, the jacket was constructed by the regression formulae and tested by experts. The fit of the jacket were significantly improved rather than a ready-made suit especially the shoulder areas. This means that the methods that we proposed were good to improve the fit of the garments and could be used effectively to implement mass customization strategies in the apparel retail industry.

  • PDF