• Title/Summary/Keyword: Blue phase

검색결과 310건 처리시간 0.076초

Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

  • Kim, Min Jae;Jung, Bong-Kwang;Cho, Jaeeun;Song, Hyemi;Pyo, Kyung-Ho;Lee, Ji Min;Kim, Min-Kyung;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • 제54권2호
    • /
    • pp.147-154
    • /
    • 2016
  • Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

A STUDY ON CHONDROGENIC POTENTIAL IN MANDIBULAR AND LIMB BUD MESENCHYMAL CELLS OF HUMAN EMBRYOS : A POSSIBLE ROLE OF PROTEIN KINASE C

  • Kook, Yoon-Ah;Kim, Eun-Cheol;Kim, Sang-Cheol
    • 대한치과교정학회지
    • /
    • 제26권6호
    • /
    • pp.667-676
    • /
    • 1996
  • We have examined the in vitro stage-related chondrogenic potential of human mandibular and limb bud mesenchyme cells using micromass culture. Our results indicate that limb bud mesenchyme cells as early as stage 16 by Carnegie system (37 days), well before the initiation of in vivo chondrogenesis, have chondrogenic potential which is expressed in micromass culture. These results are correlated with stage-related chondrogenic potential of human limb bud in vivo as a result of Alcian blue staining. The proliferation of chondrogenic cells increased in the first 3 days after culture and then decreased. These results were correlated with the cell cycle analysis of which the number of $G_0^1/G_1$ phase increased markedly after 3 days of culture, while the percentage of cells in S phase was decreased. On the other hand, it was rarely differentiated in the mandible. We examined the effects of two PKC modulators such as phorbol 12-myristate 13-acetate (PMA), a potent activator of PKC, and staurosporine (STSN), an inhibitor of PKC. PMA inhibited the chondrogenesis, whereas STSN promoted the chondrogenesis in a dose dependent manner. In addition, PMA exerted no inhibitory effect when the cells were pretreated for 24 h with STSN, implying that the chondrogenic events might be settled at an early step in vitro and FKC may act as a negative modulator. Collectively, these results demonstrate, for the first time, the stage-related chondrogenic potential of human mandibular and limb bud mesenchyme cells and the role of PKC during chondrogenesis in vitro & in vivo.

  • PDF

A Comparative Study of Protein Profiles in Porcine Fetus Fibroblast Cells with Different Confluence States

  • Han, Rong-Xun;Kim, Hong-Rye;Diao, Yunfei;Kim, Myung-Youn;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제33권4호
    • /
    • pp.243-248
    • /
    • 2009
  • To examine the differential expression of proteins during the cycling (70~80% confluences) and G0/G1 (full confluences) phases in porcine fetal fibroblast cells, we used a global proteomics approach by 2-D gel electrophoresis (2-DE) and MALDI-TOF-MS. Cycling cell were harvested at approximately 70% to 80% confluent state while cells in G0/G1 phase were recovered after maintenance of a confluent state for 48 hr. Cellular proteins with isoelectric points ranging between 3.0~10.0, were analyzed by 2-DE with 2 replicates of each sample. A total of approximately 700 spots were detected by 2.D gels stained with Coomassie brilliant blue. On comparing the cell samples obtained from the cycling and G0/G1 phases, a total of 13 spots were identified as differentially expressed proteins, of which 8 spots were up-regulated in the cycling cell and 5 were up-regulated in the G0/G1 phase. Differentially expressed proteins included K3 keratin, similar to serine protease 23 precursor, protein disulfide-isomerase A3, microsomal protease ER-60, alpha-actinin-2, and heat-shock protein 90 beta. The identified proteins were grouped on the basis of their basic functions such as molecular binding, catabolic, cell growth, and transcription regulatory proteins. Our results show expression profiles of key proteins in porcine fetal fibroblast cells during different cell cycle status.

암모니아 분위기에서 열처리된 GaOOH와 ZnO 혼합분말의 구조적·광학적 성질 (Optical and Structural Properties of Ammoniated GaOOH and ZnO Mixed Powders)

  • 송창호;신동휘;변창섭;김선태
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.575-580
    • /
    • 2012
  • The purpose of this study is to investigate the crystalline structure and optical properties of (GaZn)(NO) powders prepared by solid-state reaction between GaOOH and ZnO mixture under $NH_3$ gas flow. While ammoniation of the GaOOH and ZnO mixture successfully produces the single phase of (GaZn)(NO) solid solution within a GaOOH rich composition of under 50 mol% of ZnO content, this process also produces a powder with coexisting (GaZn)(NO) and ZnO in a ZnO rich composition over 50 mol%. The GaOOH in the starting material was phase-transformed to ${\alpha}$-, ${\beta}-Ga_2O_3$ in the $NH_3$ environment; it was then reacted with ZnO to produce $ZnGa_2O_4$. Finally, the exchange reaction between nitrogen and oxygen atoms at the $ZnGa_2O_4$ powder surface forms a (GaZn)(NO) solid solution. Photoluminescence spectra from the (GaZn)(NO) solid solution consisted of oxygen-related red-emission bands and yellow-, green- and blue-emission bands from the Zn acceptor energy levels in the energy bandgap of the (GaZn)(NO) solid solutions.

기상이동법으로 성장한 산화아연 나노막대의 포토루미네슨스 분석 (Photoluminescence Studies of ZnO Nanorods Grown by Vapor Phase Transport)

  • 김소아람;조민영;남기웅;김민수;김도엽;임광국;임재영
    • 대한금속재료학회지
    • /
    • 제49권10호
    • /
    • pp.818-822
    • /
    • 2011
  • ZnO nanorods were grown on Au-coated Si substrates by vapor phase transport (VPT) at the growth temperature of $600^{\circ}C$ using a mixture of zinc oxide and graphite powders as source material. Au thin films with the thickness of 5 nm were deposited by ion sputtering. Temperature-dependent photoluminescence (PL) was carried out to investigate the optical properties of the ZnO nanorods. Five peaks at 3.363, 3.327, 3.296, 3.228, and 3.143 eV, corresponding to the free exciton (FX), neutral donor bound exciton ($D^{\circ}X$), first order longitudinal optical phonon replica of free exciton (FX-1LO), FX-2LO, and FX-3LO emissions, were obtained at low-temperature (10 K). The intensity of these peaks decreased and their position was red shifted with the increase in the temperature. The FX emission peak energy of the ZnO nanorods exhibited an anomalous behavior (red-blue-red shift) with the increase in temperature. This is also known as an "S-shaped" emission shift. The thermal activation energy for the exciton with increasing temperature in the ZnO nanorods is found to be about 26.6 meV; the values of Varshni's empirical equation fitting parameters are = $5{\times}10^{-4}eV/K$, ${\beta}=350K$, and $E_g(0)=3.364eV$.

Template-free preparation of TiO2 microspheres for the photocatalytic degradation of organic dyes

  • Al Ruqaishy, Mouza;Al Marzouqi, Faisal;Qi, Kezhen;Liu, Shu-yuan;Karthikeyan, Sreejith;Kim, Younghun;Al-Kindy, Salma Mohamed Zahran;Kuvarega, Alex Tawanda;Selvaraj, Rengaraj
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2283-2289
    • /
    • 2018
  • $TiO_2$ microspheres were successfully synthesised by simple solution phase method by using various amount of titanium butoxide as precursor. The prepared $TiO_2$ were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance absorption spectra (UV-DRS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XRD analysis revealed that the as-synthesized $TiO_2$ microsphere poses an anatase phase. The photocatalytic degradation experiments were carried out with three different dyes, such as methylene blue, brilliant black, reactive red-120 for four hours under UV light irradiation. The results show that $TiO_2$ morphology had great influence on photocatalytic degradation of organic dyes. The experimental results of dye mineralization indicated the concentration was reduced by a high portion of up to 99% within 4 hours. On the basis of various characterization of the photocatalysts, the reactions involved to explain the photocatalytic activity enhancement due to the concentration of titanium butoxide and morphology include a better separation of photogenerated charge carriers and improved oxygen reduction inducing a higher extent of degradation of aromatics.

Water-stable solvent dependent multicolored perovskites based on lead bromide

  • Sharipov, Mirkomil;Hwang, Soojin;Kim, Won June;Huy, Bui The;Tawfik, Salah M.;Lee, Yong-Ill
    • Advances in nano research
    • /
    • 제13권2호
    • /
    • pp.187-197
    • /
    • 2022
  • The synthesis of organic and hybrid organic-inorganic perovskites directly from solution improves the cost- and energy-efficiency of processing. To date, numerous research efforts have been devoted to investigating the influence of the various solvent parameters for the synthesis of lead halide perovskites, focused on the effects of different single solvents on the efficiency of the resulting perovskites. In this work, we investigated the effect of solvent blends for the first time on the structure and phase of perovskites produced via the Lewis base vapor diffusion method to develop a new synthetic approach for water-stable CsPbBr3 particles with nanometer-sized dimensions. Solvent blends prepared with DMF and water-miscible solvents with different Gutmann's donor numbers (DN) affect the Pb ions differently, resulting in a variety of lead bromide species with various colors. The use of a DMF/isopropanol solvent mixture was found to induce the formation of the Ruddlesden-Popper perovskite based on lead bromide. This perovskite undergoes a blue color shift in the solvated state owing to the separation of nanoplatelets. In contrast, the replacement of isopropanol with DMSO, which has a high DN, induces the formation of spherical CsPbBr3 perovskite nanoparticles that exhibit green emission. Finally, the integration of acetone in the solvent system leads to the formation of lead bromide complexes with a yellow-orange color and the perovskite CsPbBr3.

발광다이오드(LED) 파장에 따른 Tetraselmis suecica와 T. tetrathele의 탄수화물, 단백질 및 지질 함량에 미치는 영향 (Effects of Light Quality of a Light-Emitting Diode (LED) on Carbohydrate, Protein, and Lipid Contents of Tetraselmis suecica and T. tetrathele)

  • 한경하;오석진
    • 해양환경안전학회지
    • /
    • 제29권1호
    • /
    • pp.36-43
    • /
    • 2023
  • 본 연구는 Tetraselmis suecica와 T. tetrathele의 영양물질 증진효과를 가져올 수 있는 배양시스템 구축을 위하여, 발광다이오드(LED)의 파장별(청색; 450 nm, 황색; 590 nm, 적색; 630 nm) 탄수화물, 단백질, 지질 함량을 측정하였다. 두 종 모두 단백질 비율(42~69%)이 가장 높았으며, 생장속도가 낮았던 황색파장에서 탄수화물, 단백질, 지질의 높은 함량을 보였고, 생장속도가 가장 높았던 적색파장에서는 낮은 함량을 보였다. 이러한 결과는 세포 분열 속도의 감소로 인해 단백질 합성과 함께 세포의 화학적 조성과 효소 활동에 변화를 주어 지질과 탄수화물 함량이 증가한 것으로 생각된다. 따라서, T. suecica와 T. tetrathele의 유용한 생화학적 물질의 증대를 위해 대수생장기 초기와 중기는 적색 LED 그리고 대수생장기 후기에는 황색 LED를 주사하는 2단계 LED 배양을 제안하였다.

Long-term simultaneous monitoring observations of SiO and H2O masers toward Mira variable WX Serpentis

  • Lim, Jang Ho;Kim, Jaeheon;Son, Seong Min;Suh, Kyung-Won;Cho, Se-Hyung;Yang, Haneul;Yoon, Dong-Hwan
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.49.1-49.1
    • /
    • 2021
  • We carried out simultaneous monitoring observations of five maser lines, H2O (22 GHz), SiO 𝝊 =1, 2, J =1-0 (43.1, 42.8 GHz), and SiO 𝝊 =1, J=2-1, J =3-2 (86.2, 129.3 GHz), toward the Mira variable star WX Serpentis with the 21-m antennas of the Korean VLBI Network (KVN) in 2009-2021 (~12 years). Most spectra of the H2O maser are well separated into two parts of two blue- and one redshifted features within ± 10 km s-1 of the stellar velocity. All detected SiO masers are generally concentrated within ± 5 km s-1 of the stellar velocity, and sometimes appear split into two components. Overall, the profiles of SiO and H2O masers detected in WX Serpentis illustrate typical characteristics of the Mira variable. In addition, flux variations of both SiO and H2O masers are well correlated with the optical light curve of the central star, showing a phase lag of ~ 0.1 for SiO masers and ~ 0.2 for H2O maser. This phenomenon is considered to be the direct effect of propagating shock waves generated by the stellar pulsation, because SiO and H2O masers are sequentially distributed at different positions with respect to the central star. In addition, we analyzed long-term trends and characteristics of maser velocities, maser ratio, and the velocity extents (the full width at zero power; FWZP). We also investigated a spectral energy distribution (SED) ranging from 1.2 to 240 ㎛ obtained using several infrared data: 2MASS, WISE, IRAS, ISO, COBE DIBRE, RAFGL, and AKARI (IRC and FIS). From the IRAS LRS and ISO SWS spectra of this star, we identified 9.7 and 12 ㎛ silicate emission features consistent with the SE6 spectrum model, corresponding to the typical AGB phase.

  • PDF

마우스 T 세포 림프종 EL4 세포에 대한 metformin 단독 및 2-deoxy-D-glucose와 병용의 항암효과 (Anticancer effect of metformin alone and in combination with 2-deoxy-D-glucose on mouse T cell lymphoma EL4 cells)

  • 김시연;주홍구
    • 대한수의학회지
    • /
    • 제63권3호
    • /
    • pp.30.1-30.8
    • /
    • 2023
  • Metformin is a treatment used widely for non-insulin-dependent diabetes mellitus with few side effects and acts by inhibiting hepatic gluconeogenesis and glucose absorption from the gastrointestinal tract. Lymphoma is one of the most common hematological malignancies in dogs. Chemotherapy is used mainly on lymphoma, but further research on developing anticancer drugs for lymphoma is needed because of its severe side effects. This study examined the anticancer effects of metformin alone and in combination with 2-deoxy-D-glucose (2-DG), a glucose analog, on EL4 cells (mouse T cell lymphoma). Metformin reduced the metabolic activity of EL4 cells and showed an additive effect when combined with 2-DG. In addition, cell death was confirmed using a trypan blue exclusion test, Hochest 33342/propidium iodide (PI) staining, and Annexin V/PI staining. An analysis of the cell cycle and mitochondria membrane potential (MMP) to investigate the mechanism of action showed that metformin stopped the G2/M phase of EL4 cells, and metformin + 2-DG decreased MMP. Metformin exhibited anticancer effects as a G2/M phase arrest mechanism in EL4 cells and showed additive effects when combined with 2-DG via MMP reduction. Unlike cytotoxic chemotherapeutic anticancer drugs, metformin and 2-DG are related to cellular glucose metabolism and have little toxicity. Therefore, metformin and 2-DG can be an alternative to reduce the toxicity caused by chemotherapeutic anticancer drugs. Nevertheless, research is needed to verify the in vivo efficacy of metformin and 2-DG before they can be used in lymphoma treatments.