Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.11.575

Optical and Structural Properties of Ammoniated GaOOH and ZnO Mixed Powders  

Song, Changho (Midas System Co. Ltd.)
Shin, Dongwhee (Department of Materials Engineering, Research Center for Infotronic Materials and Devices Hanbat National University)
Byun, Changsob (Department of Materials Engineering, Research Center for Infotronic Materials and Devices Hanbat National University)
Kim, Seontai (Department of Materials Engineering, Research Center for Infotronic Materials and Devices Hanbat National University)
Publication Information
Korean Journal of Materials Research / v.22, no.11, 2012 , pp. 575-580 More about this Journal
Abstract
The purpose of this study is to investigate the crystalline structure and optical properties of (GaZn)(NO) powders prepared by solid-state reaction between GaOOH and ZnO mixture under $NH_3$ gas flow. While ammoniation of the GaOOH and ZnO mixture successfully produces the single phase of (GaZn)(NO) solid solution within a GaOOH rich composition of under 50 mol% of ZnO content, this process also produces a powder with coexisting (GaZn)(NO) and ZnO in a ZnO rich composition over 50 mol%. The GaOOH in the starting material was phase-transformed to ${\alpha}$-, ${\beta}-Ga_2O_3$ in the $NH_3$ environment; it was then reacted with ZnO to produce $ZnGa_2O_4$. Finally, the exchange reaction between nitrogen and oxygen atoms at the $ZnGa_2O_4$ powder surface forms a (GaZn)(NO) solid solution. Photoluminescence spectra from the (GaZn)(NO) solid solution consisted of oxygen-related red-emission bands and yellow-, green- and blue-emission bands from the Zn acceptor energy levels in the energy bandgap of the (GaZn)(NO) solid solutions.
Keywords
GaN; ZnO; (GaZn)(NO); solid solution; photoluminescence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Nakamura and G. Fasol, The Blue Laser Diode, p. 1, Springer, New York, USA (1997).
2 D. Ehrentraut, E. Meissner and M. Bockowski, Technology of Gallium Nitride Crystal Growth, p. 245-254, Springer, New York, USA (2010).
3 C. M. Balkas and R. F. Davis, J. Am. Ceram. Soc., 79, 2309 (1996).   DOI   ScienceOn
4 S. Cho, J. Lee, I. Y. Park and S. Kim, Mater. Sci. Eng. B, 95, 275 (2002).   DOI   ScienceOn
5 J. Lee and S. Kim, Kor. J. Mater. Res., 15, 348 (2005) (in Korean).   DOI   ScienceOn
6 S. Shimada, H. Otani, A. Miura, T. Sekiguchi and M Yokoyama, J. Cryst. Growth, 452, 312 (2010).
7 Y. Watanabe and S. Uekusa, Vacuum, 84, 514 (2010).
8 K. Maeda, K. Teramura and K. Domen, J. Catal., 254, 198 (2008).   DOI   ScienceOn
9 H. Chen, W. Wen, Q. Wang, J. C. Hanson, J. T. Muckerman, E. Fujita, A. I. Frenkel and J. A. Rodriguez, J. Phys. Chem. C, 113, 3650 (2009).   DOI   ScienceOn
10 B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., p. 335-336, Addison-Wesley, Ontario, Canada (1978).
11 K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi and K. Domen, J. Phys. Chem., B, 109, 20504 (2005).   DOI
12 G. Jacob, M. Boulou and M. Furtado, J. Cryst. Growth, 42, 136 (1977).   DOI   ScienceOn
13 K. Fujii, G. Fujimoto, T. Goto, T. Yao, N. Hoshino, Y. Kagamitani, D. Ehrentraut and T. Fukuda, Phys. Status Solidi A, 204, 3509 (2007).   DOI   ScienceOn