Browse > Article
http://dx.doi.org/10.1007/s11814-018-0122-9

Template-free preparation of TiO2 microspheres for the photocatalytic degradation of organic dyes  

Al Ruqaishy, Mouza (Department of Chemistry, College of Science, Sultan Qaboos University)
Al Marzouqi, Faisal (Department of Chemistry, College of Science, Sultan Qaboos University)
Qi, Kezhen (Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University)
Liu, Shu-yuan (Department of Pharmacology, Shenyang Medical College)
Karthikeyan, Sreejith (Department of Physics and Nanotechnology, SRM Research Institute, SRM University)
Kim, Younghun (Department of Chemical Engineering, Kwangwoon University)
Al-Kindy, Salma Mohamed Zahran (Department of Chemistry, College of Science, Sultan Qaboos University)
Kuvarega, Alex Tawanda (Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus)
Selvaraj, Rengaraj (Department of Chemistry, College of Science, Sultan Qaboos University)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2283-2289 More about this Journal
Abstract
$TiO_2$ microspheres were successfully synthesised by simple solution phase method by using various amount of titanium butoxide as precursor. The prepared $TiO_2$ were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance absorption spectra (UV-DRS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XRD analysis revealed that the as-synthesized $TiO_2$ microsphere poses an anatase phase. The photocatalytic degradation experiments were carried out with three different dyes, such as methylene blue, brilliant black, reactive red-120 for four hours under UV light irradiation. The results show that $TiO_2$ morphology had great influence on photocatalytic degradation of organic dyes. The experimental results of dye mineralization indicated the concentration was reduced by a high portion of up to 99% within 4 hours. On the basis of various characterization of the photocatalysts, the reactions involved to explain the photocatalytic activity enhancement due to the concentration of titanium butoxide and morphology include a better separation of photogenerated charge carriers and improved oxygen reduction inducing a higher extent of degradation of aromatics.
Keywords
$TiO_2$; Template-free; Hydrothermal; Photocatalytic Activity; Organic Dye;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. M. Mahmoodi, J. Abdi, M. Oveisi, M. A. Asli and M. Vossoughi, Mater. Res. Bull., 100, 357 (2018).   DOI
2 A. R. Khataee and M. B. Kasiri, J. Mol. Cat. A, 328, 8 (2010).   DOI
3 M. C. V. M. Starling, L. A. S. Castro, R. B. P. Marcelino, M. M. D. Leao and C. C. Amorim, Environ. Sci. Pollut. Res., 24, 6222 (2017).   DOI
4 F. S. Domingues, T. K. F. S. Freitas, C. A. de Almeida, R. P. de Souza, E. Ambrosio, S. M. Palacio and J. C. Garcia, Environ. Technol., 1 (2017), DOI:10.1080/09593330.2017.1418913.   DOI
5 N. Jaafarzadeh, A. Takdastan, S. Jorfi, F. Ghanbari, M. Ahmadi and G. Barzegar, J. Mol. Liq., 256, 162 (2018).
6 R. P. Souza, T. K. Freitas, F. S. Domingues, O. Pezoti, E. Ambrosio, A. M. Ferrari-Lima and J. C. Garcia, J. Photochem. Photobio. A, 329, 9 (2016).   DOI
7 A. Asghar, A. A. A. Raman and W. M. A. W. Daud, J. Clean. Prod., 87, 826 (2015).   DOI
8 A. Touati, T. Hammedi, W. Najjar, Z. Ksibi and S. Sayadi, J. Ind. Eng. Chem., 35, 36 (2016).   DOI
9 H. U. Farouk, A. A. A. Raman and W. M. A. W. Daud, J. Ind. Eng. Chem., 33, 11 (2016).   DOI
10 M. E. Borges, M. Sierra, E. Cuevas, R. D. Garcia and P. Esparza, Sol. Energy, 135, 527 (2016).   DOI
11 K. M. Reza, A. S. W. Kurny and F. Gulshan, Appl. Water Sci., 7, 1569 (2017).   DOI
12 D. Ariyanti, M. Maillot and W. Gao, J. Environ. Chem. Eng., 6, 539 (2018).   DOI
13 S. Park, W. Kim and Y. Kim, Korean J. Chem. Eng., 34, 1500 (2017).   DOI
14 M. Behpour, R. Foulady-Dehaghi and N. Mir, Sol. Energy, 158, 636 (2017).   DOI
15 W. Zhao, X. He, Y. Peng, H. Zhang, D. Sun and X. Wang, Water Sci. Technol., 75, 1494 (2017).   DOI
16 A. Khanna and V. K. Shetty, Sol. Energy, 99, 67 (2014).   DOI
17 K. O. Hamaloglu, E. Sag, A. Bilir and A. Tuncel, Mater. Chem. Phys., 207, 359 (2018).   DOI
18 C. Wang, H. Liu, Y. Liu, G. He and C. Jiang, Appl. Surf. Sci., 319, 2 (2014).   DOI
19 C. J. Lin, W.-T. Yang, C.-Y. Chou and S. Y. H. Liou, Chemosphere, 152, 490 (2016).   DOI
20 X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007).   DOI
21 P. Kubelka and F. Munk, Tech. Phys., 12, 593 (1931).
22 P. Kubelka, J. Opt. Soc. Am., 38, 448 (1948).   DOI
23 H. Tang, K. Prasad, R. Sanjines, P. Schmid and F. Levy, J. Appl. Phys., 75, 2042 (1994).   DOI
24 K. M. Reddy, S. V. Manorama and A. R. Reddy, Mater. Chem. Phys., 78, 239 (2003).   DOI
25 J. Zhang, P. Zhou, J. Liu and J. Yu, Phys. Chem. Chem. Phys., 16, 20382 (2014).   DOI
26 B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie and M. S. El-Aasser, Langmuir, 17, 2664 (2001).   DOI
27 A. R. Burke, C. R. Brown, W. C. Bowling, J. E. Glaub, D. Kapsch, C. M. Love, R. B. Whitaker and W. E. Moddeman, J. Surf. Interface Anal., 11, 353 (1988).   DOI
28 H.-A. Park, S. Liu, Y. Oh, P. A. Salvador, G. S. Rohrer and M. F. Islam, ACS Nano., 11, 2150 (2017).   DOI
29 F. Wang, J. H. Ho, Y. Jiang and R. Amal, ACS Appl. Mater. Interf., 7, 23941 (2015).   DOI
30 S. H. Sharif and A. R. Aldo, Ind. Eng. Chem. Res., 47, 6598 (2008).   DOI