Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.10.818

Photoluminescence Studies of ZnO Nanorods Grown by Vapor Phase Transport  

Kim, Soaram (School of Nano Engineering, Inje University)
Cho, Min Young (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Nam, Giwoong (School of Nano Engineering, Inje University)
Kim, Min Su (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Kim, Do Yeob (Holcombe Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies, Clemson University)
Yim, Kwang Gug (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Leem, Jae-Young (School of Nano Engineering, Inje University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.10, 2011 , pp. 818-822 More about this Journal
Abstract
ZnO nanorods were grown on Au-coated Si substrates by vapor phase transport (VPT) at the growth temperature of $600^{\circ}C$ using a mixture of zinc oxide and graphite powders as source material. Au thin films with the thickness of 5 nm were deposited by ion sputtering. Temperature-dependent photoluminescence (PL) was carried out to investigate the optical properties of the ZnO nanorods. Five peaks at 3.363, 3.327, 3.296, 3.228, and 3.143 eV, corresponding to the free exciton (FX), neutral donor bound exciton ($D^{\circ}X$), first order longitudinal optical phonon replica of free exciton (FX-1LO), FX-2LO, and FX-3LO emissions, were obtained at low-temperature (10 K). The intensity of these peaks decreased and their position was red shifted with the increase in the temperature. The FX emission peak energy of the ZnO nanorods exhibited an anomalous behavior (red-blue-red shift) with the increase in temperature. This is also known as an "S-shaped" emission shift. The thermal activation energy for the exciton with increasing temperature in the ZnO nanorods is found to be about 26.6 meV; the values of Varshni's empirical equation fitting parameters are = $5{\times}10^{-4}eV/K$, ${\beta}=350K$, and $E_g(0)=3.364eV$.
Keywords
zinc oxide; nanostructured materials; vapor deposition; photoluminescence;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch, and G. Cantwell Phys. Rev. B 57, 12151 (1998).   DOI
2 B.Z. Dong, G. J. Fang, J.F. Wang, W. J. Guan, and X. Z. Zhao, J. Appl. Phys. 101, 033713 (2007).   DOI   ScienceOn
3 L. Wang, and N. C Giles, J. Appl. Phys. 94, 973 (2003).   DOI   ScienceOn
4 A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Phonce, J. S. Tanaka, A. Fujioka, and Y. Nakagawa, J. Appl. Phys. 95, 4670 (2004).   DOI   ScienceOn
5 Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998).   DOI   ScienceOn
6 M. S. Kim, D. Y. Kim, H. J. Park, J. S. Kim, J. S. Kim, D.- Y. Lee, J. -S. Son, and J. -Y. Leem, Jpn. J. Appl. Phys. 48, 041103 (2009).   DOI
7 M. Merrick, S. A. Cripps, B. N. Murdin, T. J. C. Hosea, T. D. Veal, C. F. McConville, and M. Hopkinson, Phys. Rev. B 76, 075209 (2007).   DOI
8 E. G. Bylander, J. Appl. Phys. 49, 1188 (1978).   DOI   ScienceOn
9 S. A. Lourenço, M. A. T. da Silva, I. F. L. Dias, J. L. Duarte, E. Laureto, A. A. Quivy and T. E. Lamas, J. Appl. Phys. 101, 113536 (2007).   DOI   ScienceOn
10 H. Oh, J. -J. Kim, J. -O. Lee, and S. S. Kim, J. Korean Phys. Soc. 58, 291 (2011).   DOI   ScienceOn
11 S. Rackauskas, A. G. Nasibulin, H. Jiang, Y. Tian, G. Statkute, S. D. Shandakov, H. Lipsanen, and E. I. Kauppinen, Appl. Phys. Lett. 95, 183114 (2009).   DOI   ScienceOn
12 L. Vayssieres, K. Keis, A. Hagfeldt, and S.-E. Lindquist, Chem. Mater. 13, 4395 (2001).   DOI   ScienceOn
13 Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).   DOI   ScienceOn
14 P. Nunes, D. Costa, E. Fortunato, and R. Martins, Vacuum 64, 293 (2002).   DOI   ScienceOn
15 D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, and S. J. Parkl, Appl. Phys. Lett. 86, 222101 (2005).   DOI   ScienceOn
16 A. Mitra, R. K. Thareja, V. Ganesan, A. Gupta, P. K. Sahoo, and V. N. Kulkarni, Appl. Surf. Sci. 174, 232 (2001).   DOI   ScienceOn
17 R. Groenen, J. Loffler, P. M. Sommeling, J. L. Linden, E. A. G. Hamers, R. E. I. Schropp, and M. C. M. van de Sanden, Thin Solid Films 392, 226 (2001).   DOI   ScienceOn
18 S. Roy, and S. Basu, Bull. Mater. Sci. 25, 513 (2002).   DOI   ScienceOn
19 L. Hadjeris, L. Herissi, M. B. Assouar, T. Easwarakhanthan, J. Bougdira, N. Attaf, and M. S. Aida, Semicond. Sci. Technol. 24, 035006 (2009).   DOI   ScienceOn
20 M. S. Kim, T. H. Kim, D. Y. Kim, G. S. Kim, H. Y. Choi, M. Y. Cho, S. M. Jeon, J. S. Kim, J. S. Kim, D. Y. Lee, J. S. Son, J. I. Lee, J. H. Kim, E. Kim, D. W. Hwang, and J. Y. Leem, J. Cryst. Growth 311, 3568 (2009).   DOI   ScienceOn
21 K. B. Sundaram, and A. Khan, Thin Solid Films 295, 87 (1997).   DOI   ScienceOn
22 Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett. 396, 21 (2004).   DOI   ScienceOn
23 M. Godlewski, E. Guziewicz, G. Luka, T. Krajewski, M. Lukasiewicz, L. Wachnicki, A. Wachnicka, K. Kopalko, A. Sarem, B. Dalati, Thin Solid Films 518, 1145 (2009).   DOI   ScienceOn
24 X. Zong, and P. Wang, physica, E 41, 757 (2009).
25 G. Zhu, C. Xu, Y. Yang, K. Zheng, and X. Sun, Mater. Chem. Phys. 113, 115 (2009).   DOI   ScienceOn
26 J. H. Shin, J. Y. Song, and H. M. Park, Mater. Lett. 63, 145 (2009).   DOI   ScienceOn
27 J. Koo, M. Lee, J. Kang, C. Yoon, K. Kim, Y. Jeon, and S. Kim, Semicond. Sci. Technol. 25, 045010 (2010).   DOI   ScienceOn
28 G. J. Lee, H. J. Nam, C. K. Hwangbo, H. Lim, H. Cheong, H. S. Kim, C. S. Yoon, S. Y. Min, S. H. Han, and Y. P. Lee, Jpn. J. Appl. Phys. 49, 105001 (2010).   DOI
29 Y. J. Xing, Z. H. Xi, Z. Q. Xue. X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, Appl. Phys Lett. 83, 1689 (2003).   DOI   ScienceOn
30 X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003).   DOI   ScienceOn
31 B. W. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. 14, 1841 (2002).   DOI   ScienceOn
32 D. H. Thomas, J. J. Hopfield, and W. M. Augustyniak, Phys. Rev. 140, A202 (1965).   DOI
33 M. A. Reshchidov, and R. Y. Korotkov. Phys. Rev. B 64, 115205 (2001).   DOI
34 W. Shan, W. Walukiewicz, J. W. Ager III, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, Appl. Phys.Lett. 86, 191911 (2005).   DOI   ScienceOn
35 D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, Appl. Phys.Lett. 93, 3214 (2003).
36 Y. Zhang, D. J. Chen, and C. T. Lee, Appl. Phys.Lett. 91, 161911 (2007).   DOI
37 P. M. R. Kumar, K. P. Vijayakumar, C. S. Kartha, J. Mater. Sci. 42, 2598 (2007).   DOI   ScienceOn
38 Y. R. Jang, K.-H. Yoo, and S. M. Park, J. Korean Phys. Soc. 53, 110 (2008).   DOI
39 T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Börner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, Appl. Phys. Lett. 89, 182107 (2006).   DOI   ScienceOn
40 J. Jie, G. Wang, Y. Chen, X. Han, Q. Wang, B. Xu, and J. G. Hou, Appl. Phys. Lett. 86, 031909 (2005).   DOI   ScienceOn