DOI QR코드

DOI QR Code

Photoluminescence Studies of ZnO Nanorods Grown by Vapor Phase Transport

기상이동법으로 성장한 산화아연 나노막대의 포토루미네슨스 분석

  • Kim, Soaram (School of Nano Engineering, Inje University) ;
  • Cho, Min Young (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Nam, Giwoong (School of Nano Engineering, Inje University) ;
  • Kim, Min Su (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Do Yeob (Holcombe Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies, Clemson University) ;
  • Yim, Kwang Gug (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Leem, Jae-Young (School of Nano Engineering, Inje University)
  • 김소아람 (인제대학교 나노공학부) ;
  • 조민영 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 남기웅 (인제대학교 나노공학부) ;
  • 김민수 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 김도엽 (클렘슨대학교 광학재료과학공학기술센터 전기컴퓨터공학과) ;
  • 임광국 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 임재영 (인제대학교 나노공학부)
  • Received : 2011.04.25
  • Published : 2011.10.25

Abstract

ZnO nanorods were grown on Au-coated Si substrates by vapor phase transport (VPT) at the growth temperature of $600^{\circ}C$ using a mixture of zinc oxide and graphite powders as source material. Au thin films with the thickness of 5 nm were deposited by ion sputtering. Temperature-dependent photoluminescence (PL) was carried out to investigate the optical properties of the ZnO nanorods. Five peaks at 3.363, 3.327, 3.296, 3.228, and 3.143 eV, corresponding to the free exciton (FX), neutral donor bound exciton ($D^{\circ}X$), first order longitudinal optical phonon replica of free exciton (FX-1LO), FX-2LO, and FX-3LO emissions, were obtained at low-temperature (10 K). The intensity of these peaks decreased and their position was red shifted with the increase in the temperature. The FX emission peak energy of the ZnO nanorods exhibited an anomalous behavior (red-blue-red shift) with the increase in temperature. This is also known as an "S-shaped" emission shift. The thermal activation energy for the exciton with increasing temperature in the ZnO nanorods is found to be about 26.6 meV; the values of Varshni's empirical equation fitting parameters are = $5{\times}10^{-4}eV/K$, ${\beta}=350K$, and $E_g(0)=3.364eV$.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. L. Vayssieres, K. Keis, A. Hagfeldt, and S.-E. Lindquist, Chem. Mater. 13, 4395 (2001). https://doi.org/10.1021/cm011160s
  2. Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998). https://doi.org/10.1063/1.368595
  3. P. Nunes, D. Costa, E. Fortunato, and R. Martins, Vacuum 64, 293 (2002). https://doi.org/10.1016/S0042-207X(01)00323-2
  4. D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, and S. J. Parkl, Appl. Phys. Lett. 86, 222101 (2005). https://doi.org/10.1063/1.1940736
  5. A. Mitra, R. K. Thareja, V. Ganesan, A. Gupta, P. K. Sahoo, and V. N. Kulkarni, Appl. Surf. Sci. 174, 232 (2001). https://doi.org/10.1016/S0169-4332(01)00171-4
  6. R. Groenen, J. Loffler, P. M. Sommeling, J. L. Linden, E. A. G. Hamers, R. E. I. Schropp, and M. C. M. van de Sanden, Thin Solid Films 392, 226 (2001). https://doi.org/10.1016/S0040-6090(01)01032-X
  7. L. Hadjeris, L. Herissi, M. B. Assouar, T. Easwarakhanthan, J. Bougdira, N. Attaf, and M. S. Aida, Semicond. Sci. Technol. 24, 035006 (2009). https://doi.org/10.1088/0268-1242/24/3/035006
  8. M. S. Kim, T. H. Kim, D. Y. Kim, G. S. Kim, H. Y. Choi, M. Y. Cho, S. M. Jeon, J. S. Kim, J. S. Kim, D. Y. Lee, J. S. Son, J. I. Lee, J. H. Kim, E. Kim, D. W. Hwang, and J. Y. Leem, J. Cryst. Growth 311, 3568 (2009). https://doi.org/10.1016/j.jcrysgro.2009.05.010
  9. S. Roy, and S. Basu, Bull. Mater. Sci. 25, 513 (2002). https://doi.org/10.1007/BF02710540
  10. K. B. Sundaram, and A. Khan, Thin Solid Films 295, 87 (1997). https://doi.org/10.1016/S0040-6090(96)09274-7
  11. Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett. 396, 21 (2004). https://doi.org/10.1016/j.cplett.2004.07.110
  12. M. Godlewski, E. Guziewicz, G. Luka, T. Krajewski, M. Lukasiewicz, L. Wachnicki, A. Wachnicka, K. Kopalko, A. Sarem, B. Dalati, Thin Solid Films 518, 1145 (2009). https://doi.org/10.1016/j.tsf.2009.04.066
  13. X. Zong, and P. Wang, physica, E 41, 757 (2009).
  14. G. Zhu, C. Xu, Y. Yang, K. Zheng, and X. Sun, Mater. Chem. Phys. 113, 115 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.055
  15. J. H. Shin, J. Y. Song, and H. M. Park, Mater. Lett. 63, 145 (2009). https://doi.org/10.1016/j.matlet.2008.09.047
  16. J. Koo, M. Lee, J. Kang, C. Yoon, K. Kim, Y. Jeon, and S. Kim, Semicond. Sci. Technol. 25, 045010 (2010). https://doi.org/10.1088/0268-1242/25/4/045010
  17. G. J. Lee, H. J. Nam, C. K. Hwangbo, H. Lim, H. Cheong, H. S. Kim, C. S. Yoon, S. Y. Min, S. H. Han, and Y. P. Lee, Jpn. J. Appl. Phys. 49, 105001 (2010). https://doi.org/10.1143/JJAP.49.105001
  18. X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003). https://doi.org/10.1063/1.1587878
  19. Y. J. Xing, Z. H. Xi, Z. Q. Xue. X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, Appl. Phys Lett. 83, 1689 (2003). https://doi.org/10.1063/1.1605808
  20. B. W. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. 14, 1841 (2002). https://doi.org/10.1002/adma.200290015
  21. D. H. Thomas, J. J. Hopfield, and W. M. Augustyniak, Phys. Rev. 140, A202 (1965). https://doi.org/10.1103/PhysRev.140.A202
  22. M. A. Reshchidov, and R. Y. Korotkov. Phys. Rev. B 64, 115205 (2001). https://doi.org/10.1103/PhysRevB.64.115205
  23. W. Shan, W. Walukiewicz, J. W. Ager III, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, Appl. Phys.Lett. 86, 191911 (2005). https://doi.org/10.1063/1.1923757
  24. D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, Appl. Phys.Lett. 93, 3214 (2003).
  25. Y. Zhang, D. J. Chen, and C. T. Lee, Appl. Phys.Lett. 91, 161911 (2007). https://doi.org/10.1063/1.2793178
  26. P. M. R. Kumar, K. P. Vijayakumar, C. S. Kartha, J. Mater. Sci. 42, 2598 (2007). https://doi.org/10.1007/s10853-006-1339-2
  27. Y. R. Jang, K.-H. Yoo, and S. M. Park, J. Korean Phys. Soc. 53, 110 (2008). https://doi.org/10.3938/jkps.53.110
  28. T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Börner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, Appl. Phys. Lett. 89, 182107 (2006). https://doi.org/10.1063/1.2364146
  29. J. Jie, G. Wang, Y. Chen, X. Han, Q. Wang, B. Xu, and J. G. Hou, Appl. Phys. Lett. 86, 031909 (2005). https://doi.org/10.1063/1.1854737
  30. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch, and G. Cantwell Phys. Rev. B 57, 12151 (1998). https://doi.org/10.1103/PhysRevB.57.12151
  31. B.Z. Dong, G. J. Fang, J.F. Wang, W. J. Guan, and X. Z. Zhao, J. Appl. Phys. 101, 033713 (2007). https://doi.org/10.1063/1.2437572
  32. L. Wang, and N. C Giles, J. Appl. Phys. 94, 973 (2003). https://doi.org/10.1063/1.1586977
  33. A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Phonce, J. S. Tanaka, A. Fujioka, and Y. Nakagawa, J. Appl. Phys. 95, 4670 (2004). https://doi.org/10.1063/1.1689736
  34. Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998). https://doi.org/10.1063/1.122164
  35. M. S. Kim, D. Y. Kim, H. J. Park, J. S. Kim, J. S. Kim, D.- Y. Lee, J. -S. Son, and J. -Y. Leem, Jpn. J. Appl. Phys. 48, 041103 (2009). https://doi.org/10.1143/JJAP.48.041103
  36. M. Merrick, S. A. Cripps, B. N. Murdin, T. J. C. Hosea, T. D. Veal, C. F. McConville, and M. Hopkinson, Phys. Rev. B 76, 075209 (2007). https://doi.org/10.1103/PhysRevB.76.075209
  37. E. G. Bylander, J. Appl. Phys. 49, 1188 (1978). https://doi.org/10.1063/1.325059
  38. S. A. Lourenço, M. A. T. da Silva, I. F. L. Dias, J. L. Duarte, E. Laureto, A. A. Quivy and T. E. Lamas, J. Appl. Phys. 101, 113536 (2007). https://doi.org/10.1063/1.2745843
  39. H. Oh, J. -J. Kim, J. -O. Lee, and S. S. Kim, J. Korean Phys. Soc. 58, 291 (2011). https://doi.org/10.3938/jkps.58.291
  40. S. Rackauskas, A. G. Nasibulin, H. Jiang, Y. Tian, G. Statkute, S. D. Shandakov, H. Lipsanen, and E. I. Kauppinen, Appl. Phys. Lett. 95, 183114 (2009). https://doi.org/10.1063/1.3258074