• Title/Summary/Keyword: Blower-door

Search Result 23, Processing Time 0.027 seconds

Analysis on Ventilation Performance of Natural Ventilation Systems in Multi-Family Housing Using Blower Door Test (Blower Door Test를 이용한 공동주택 자연환기시스템의 환기성능 분석)

  • Kim, Min Seok;Auh, Jin Sun;Hong, Goopyo;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.129-134
    • /
    • 2016
  • Today, natural ventilation systems are widely applied in multi-family housing. However, studies using the wind data trend line of the blower door test are insufficient. Purpose: Through this study, we will propose a computational method about ventilation performance of natural ventilation systems by conducting blower door test. Method: First, we sealed the gaps between the main systems including the natural ventilation system and conducted the blower door test. Next, the natural ventilation system was opened, the blower door test was conducted, and the difference in air flow rate between when closed and when opened was checked. Blower door test was carried out with a pressure difference of 50 Pa. Result: Therefore, the ventilation performance of the natural ventilation system was checked by drawing a trend line using the data to calculate the air flow rate at 2 Pa of the natural ventilation equipment standard pressure difference.

Analyzing the air tightness of public housing through a blower door test (Blower door test를 통한 공공행복주택의 침기율 분석)

  • Kim, Jae-Hee;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.167-168
    • /
    • 2023
  • The government has established a zero-energy roadmap in accordance with its 2050 carbon neutrality strategy, and from 2023 onwards, residential buildings with 30 generations or more must be constructed as zero-energy structures. In response to this, measures for energy conservation through enhanced building tightness are being developed. The LH (Land and Housing Corporation) aims to achieve the first-stage building tightness performance targets by 2022 in preparation for this. Currently, South Korea has the "KS L ISO9972 - Building Tightness - Measuring the airtightness of buildings by the fan pressurization method" as the method for measuring building tightness, which was established in 2006 and revised in 2016. In practice, the airtightness is measured using the Blower Door Test method, and it is expressed as ACH50 (the number of air changes per hour at a pressure difference of 50 Pa between the indoor and outdoor environments). This study aims to measure and analyze the airtightness of Happy Homes constructed from 2020 to 2022, categorized by building type.

  • PDF

A study on fuzzy control for vehicle air conditioner (자동차용 공기조화기의 퍼지 제어에 관한 연구)

  • 김양영;봉재경;진상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.516-519
    • /
    • 1997
  • In this paper, the control of the temperature for the vehicle air conditioner is implemented with the fuzzy controller using a micro controller. The linguistic control rules of the fuzzy controller are separated into two out variables(multi input multi output ; MIMO) : one is those for the blower motor, and the other is those for air mix door. The error in fuzzy controller, the input variable is defined as difference between the reference temperature and the actual temperature in the cabin room. The fuzzy control rules are established from the human operator experience, and based engineering knowledge about the process. The method of the center of gravity is utilized for the defuzzification.

  • PDF

The measurement study on the airtightness of dwellings based on the passive design (패시브 디자인을 적용한 주택의 기밀성에 관한 실측 사례 연구)

  • Lee, Tae-Goo;Yun, Doo-Young
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.13-20
    • /
    • 2013
  • Today, the world energy consumption in buildings occupies more than 30%. In our country, the energy consumption in buildings also occupies 25% of the entire national energy consumption. With the increasing demand of energy saving in architectural fields, there is a more interest in low-energy construction. For these low-energy housings, our country is planning to apply the energy-saving design standards at the level of passive houses in 2017. However, there is still a limitation in energy saving only with the standards on the performance of envelope in buildings. This means that unless a building is airtight even though it was well-insulated, cooling and heating energy consumption will increase due to the infiltration and leakage. Therefore, this study aims to make a comparative analysis of airtight performance by conducting a blower door test on the housings applied with passive designs, analyze the reasons why most houses fall short of the airtightness standards, and complement the airtightness problems in the inadequate parts of the buildings in order to save building energy.

Experimental Study on Airtightness Performance of the House with High Levels of Insulation and Airtight Construction (고기밀 고단열 주택의 기밀성능에 관한 실험적 연구)

  • Shin, U-Cheul;Yoon, Jong-Ho;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.61-67
    • /
    • 2005
  • The purpose of this study is to evaluate the air tightness of Zero Energy Solar House(ZeSH) and to propose the construction improvement of junctions and penetrations where air infiltration was identified. Air leakage rate were measured by means of blower door test in accordance with ASTM E779-87. The results showed that ZeSH has an excellent airtightness with ACH50/20 (air change per hour at a pressure difference of 50 Pa between inside outside) of 0.34hr-1 and leakage class E by normalized leakage area of ASHRAE.

A Study on the Measurement of Airtightness Performance of Detached Houses in Chung-cheong area (충청지역 단독주택의 기밀성능 실측 연구)

  • Yoon, Jong-Ho;Park, Jae-Wan;Lee, Kwang-Sung;Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.65-71
    • /
    • 2008
  • The purpose of this study is to investigate an airtightness of typical Korean detached houses with field measurements. Air leakage testings by means of blower door test in accordance with ASTM E79-8 were measured in 22 detached dwellings in Daejeon and Geumsan. The results showed that detached dwellings have an average airtightness with ACH50/20 (air chang per hour at a pressure difference of 50 Pa between inside outside) of 0.82 $hr^{-1}$ which is a higher range than for typical apartments and leakage class G by normalized leakage area of ASHRAE.

A Study of Measurement on Airtightness and Air-Flow Performance of Apartment Housing Adopting Window Frame-Type Natural Ventilation (자연환기장치가 적용된 공동주택의 기밀 및 공기유동 성능 실측 연구)

  • Chun, Chu-Young;Kim, Gil-Tae;Kim, Sun-Dong
    • Land and Housing Review
    • /
    • v.5 no.4
    • /
    • pp.325-332
    • /
    • 2014
  • The purpose of this study was to measure the airtightness and Air-Flow Performance for 7th house of small apartment houses adopted window frame-type natural ventilation. All window and living room door is provide with window frame-type natural ventilation, and there is provide with manual controller. As the object of measurement, the 6th type small apartment houses with area of $33m^2$ to $51m^2$ was selected. airtightness performance was measured at the front door using Blower door system. We measured ventilation rate per hour on 50Pa pressure different between inside and outside by the 1st to 6th cases. As a result, when the natural ventilation frame was closed, average amounts are shown as the ventilation rate per hour were 2.27ACH (CASE1). and the result is similar to general apartment house (1.65~4.28ACH). When the natural ventilation frame was open, average amounts are shown as the ventilation rate per hour were 5.87ACH (CASE6). In addition, that's a 3.6ACH increased more than CASE1.

Air Intake Door Control for the High Air Conditioning Performance (인테이크 도어 제어를 이용한 고성능 냉난방 시스템)

  • Park, Dongkyou;Kim, Yongchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.17-22
    • /
    • 2014
  • Recently, the quick heating performance is an important issue in the car because engine power becomes so high. So car makers have been adapted the additional heating devices as like PTC(Positive Temperature Coefficient) heater. And the quick cooling performance is also important issue because its result is used in the IQS(Initial Quality Study). In this paper, control of the HVAC(Heating, Ventilation and Air Conditioning) intake door has been studied for the quick heating and cooling performance. Heating performance is improved $4.0^{\circ}C$ at $-20^{\circ}C$ ambient temperature after 20 minutes. And cooling performance is improved $1.5^{\circ}C$ at $35^{\circ}C$ ambient temperature after 10 minutes. In addition, intake door control system brings on the cost reduction because the flab door can be eliminated. This intake door control system has been adapted to the new developing cars.

Analysis of Airtightness and Air Leakage of Wooden Houses in Korea

  • Kim, Sejong;Chang, Yoon-Seong;Park, Joo-Saeng;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.828-835
    • /
    • 2017
  • Airtightness of buildings is one of critical aspects of its energy performance. To build up references of airtightness of wooden houses built in Korea, blower door tests have been carried out in 42 houses since 2006. Causes of air leakage were investigated recently. The average value of air change rate was $3.7h^{-1}$ for light frame house and $5.5h^{-1}$ for post-beam construction at ACH50 (air change per hour at 50 Pa air pressure difference). Foam type insulation was more advantageous in ensuring building airtightness than glass fiber batt. Airtightness of wooden houses which were constructed after 2010 was improved to have less than $1.5h^{-1}$ of ACH50, threshold for application of artificial air change. The average air change rate of CLT (cross laminated timber) houses showed the lowest value, $1.1h^{-1}$, among the tested structures.

An Evaluation of Airtightness Performance and Analysis of Energy Savings Potential in Apartment Housing (공동주택의 기밀성능 평가 및 에너지 절감효과 분석)

  • Leigh, Seung-Bok
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.119-125
    • /
    • 1995
  • Since the using of heating energy associated with infiltration is significant in a building, the efforts to minimize the infiltration while ensuring minimum ventilation rates for various types of occupancy will be beneficial. In constrast to that many efforts have been made to reduce heat loss by improving thermal resistance of building envelope, little has been tried to reduce heat loss from infiltration. For achieving such an objective, measurement of air leakage rate will be pre-requisite as a diagnostic tool. A blower door system, a depressurization/pressurization method, was employed and it demonstrated a good potential for measuring airtightness performance of residential buildings. Based on the test results, annual energy savings for residential heating was estimated by reducing infiltration to a level of reasonably airtight or to a level of ASHRAE Standard 62-1989 for minimum ventilation.

  • PDF