• Title/Summary/Keyword: Blood-Compatibility

Search Result 69, Processing Time 0.028 seconds

Development and Application of Biocompatible Polymers(II) ―Biocompatibility of Chitosan Graft Copolymer with Phosphoryl Choline groups― (생체적합성 고분자의 개발과 응용(II) ―Phosphoryl choline기를 가진 키토산 그래프트공중합체의 생체적합성―)

  • Lee, Mi Kyung;Park, Heung Sup;Kim, Eun Young;Park, Soo Min
    • Textile Coloration and Finishing
    • /
    • v.7 no.2
    • /
    • pp.63-69
    • /
    • 1995
  • To improve the blood compatibility of chitosan membranes, 2-(methacryloyloxy)-ethyl-2-(trimethylammonium)ethyl phosphate(MTP), which is a methacrylate with phospholipid polar groups, was grafted on the surface of chitosan membranes and the biocompatibility of MTP-grafted chitosan membranes was investigated. The permeation coefficient gradually decreased with increasing in molecular weights of biocomponents below 10$^{4}$, and drastically decreased above 10$^{4}$. This result corresponds with the permeability of solutes in case of hemodialysis membranes. The MTP-grafted chitosan membranes displayed less blood cell adhesion than the chitosan membranes. This may due to the formation of biomembrane4ike surface by adsorption and arrangement of phospholipid molecules from serum onto the MTP copolymer surface.

  • PDF

The Study of Compatibility for Method of Analysis of Nonlinear Characteristics of Blood Flow of Peripheral in Rabbit (토끼에 있어서 말초혈류운동의 비선형특성분석방법의 적합성에 관한 연구)

  • 남상희;최준영;이상훈
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.75-82
    • /
    • 1997
  • The human physiological systems are so complex and irregular dynamics. Dynamics of peripheral blood vessel, in particular, have quite sensitive and complex. Before, the linear analytic method have been used to analyze the system. But, the method have many problems to predict the following results. In the other hand, the nonlinear analytic method, chaotic time series analysis method, is suitable for measuring complex, vary system. In this study, the scalar data of the blood flow of peripheral blood vessel of rabbits, in accordance with injection of glucose, was obtained and redefined as multi-dimensional vectors, with time-series analytic methods. This study also intended to confirm that the peripheral blood flow is chaotic dynamics and evaluate the availability of non-linear analytic method. As a result, the existing FFT, and mean could show the difference of blood flow of peripheral blood vessel by injection of glucose, but the nonlinear analytic method could show the definite difference. The hemodynamics is a chaotic phenomenon.

  • PDF

The Synthesis and Evaluation of Pendant Oligosaccharide-Lipid Side Chain Copolymer

  • Nam, Hye-Sung;Kim, Hyun-Joo;Nam, Kwang-Woo;Chung, Dong-June
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.115-121
    • /
    • 2003
  • In this research, the in vitro anti-thrombogenecity of artificial materials was evaluated using hydrophilic/hydrophobic copolymers containing oiligosaccharide as hydrophilic moiety and phospholipid as hydrophobic moiety respectively. N-(p-vinylbenzyl)-[O-$\alpha$-D-glucopyranosyl-(1longrightarrow4)]$_{n-1}$-D-glucoamide(VM7A) was (VM7 A) was adopted as hydrophilic oligosaccharide and 2-acryloxybutyl-2-(triethylammonium)ethyl phosphoric acid (HBA-choline) was adopted as hydrophobic phospholipid. Copolymers having various monomer feeding molar ratios were synthesized through radical polymerization. The synthesized copolymers were identified using FT-IR, $^1$H-NMR, XPS, and DSC. The surface energy of the copolymers were evaluated by dynamic contact angle (DCA) method and checked different roles of VM7A as hydrophilic moiety and HBA-choline as hydrophobic moiety on surface. The surface morphological differences between hydrated and unhydrated surfaces of copolymers were observed and evaluated using Am. The platelets were separated from canine whole blood by centrifugation and adopted to the anti-thromobogenecity test of the copolymers. From the results, we find out that as VM7A ratio increases, so did anti-thrombogenecity. Such results show the possibility of using these copolymers as blood compatible materials in living body.y.

Synthesis and Polymerization of Methacryloyl-PEG-Sulfonic Acid as a Functional Macromer for Biocompatible Polymeric Surfaces

  • Kim, Jun-Guk;Sim, Sang-Jun;Kim, Ji-Heung;Kim, Soo-Hyun;Kim, Young-Ha
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.379-383
    • /
    • 2004
  • Poly(ethylene glycol)s (PEGs) are unique in their material properties, such as biocompatibility, non-toxicity, and water-solublizing ability, which are extremely useful for a variety of biomedical applications. In addition, a variety of functional PEGs with specific functionality at one or both chain ends have been synthesized for many specialized applications. Surface modifications using PEG have been demonstrated to decrease protein adsorption and platelet or cell adhesion on biomaterials. Furthermore, PEGs having anionic sulfonate terminal units have been proven to enhance the blood compatibility of materials, which has been demonstrated by the negative cilia concept. The preparation of telechelic PEGs having a sulfonic acid group at one end and a polymerizable methacryloyl group at the other is an interesting undertaking for providing macromers that can be used in various vinyl copolymerization and gel systems. In this paper, preliminary results on the synthesis and polymerization behavior of a novel PEG macromer is described with the aim of identifying a biocompatible material for applications in various blood-contacting devices.

Development of Pressure Sensor on Polymer Substrate for Real-time Pulse and Blood Pressure Measurements (실시간 맥박 및 혈압 측정을 위한 폴리머 기판 압력센서 개발)

  • Kim, Jin-Tae;Kim, Sung Il;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.669-676
    • /
    • 2013
  • In this study, we introduce a polymer(polyimide) based pressure sensor to measure real-time heart beat and blood pressure. The sensor have been designed with consideration of skin compatibility of material, cost effectiveness, manufacturability and wireless detection. The designed sensor was composed of inductor coils and an air-gap capacitor which generate self-resonant frequency when electrical source is applied on the system. The sensor was obtained with metalization, etching, photolithography, polymer adhesive bonding and laser cutting. The fabricated sensor was shaped in circular type with 10mm diameter and 0.45 mm thickness to fit radial artery. Resonant frequencies of the fabricated sensors were in the range of 91~96 MHz on 760 mmHg pressurized environment. Also the sensor has good linearity without any pressure-frequency hysteresis. Sensitivity of the sensor was 145.5 kHz/mmHg and accuracy was less than 2 mmHg. Real-time heart beat measurement was executed with a developed hand-held measurement system. Possibility of real-time blood pressure measurement was showed with simulated artery system. After installation of the sensor on skin above radial artery, simple real blood pressure measurement was performed with 64 mmHg blood pressure variation.

Cell-compatibility of physicochemically and biologically modified polymer surfaces (물리화학적 및 생물학적으로 표면개질된 고분자의 세포 적합성 연구)

  • Lee, J.H.;Park, K.H.;Khang, G.S.;Lee, H.B.;Andrade, J.D.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.1-3
    • /
    • 1989
  • We have treated polymer surfaces such as polyethylene, polystyrene and polyester by various physicochemical and biological surface modification methods to be suitable for cell adhesion. The physicochemical methods we used were $O_2$ plasma discharge, corona discharge, sulfuric acid and chloric acid treatments. For the biological treatments, blood proteins such as plasma protein, serum protein and fibronectin were adsorbed onto the polymer surfaces. Chinese Hamster Ovary (CHO) cells were cultured on the surface-modified polymers and the cell-compatibility of those surfaces were compared. The chloric acid and fibronectin treatments were found to be the best methods of rendering the polymer surfaces adhesive for CHO cells.

  • PDF

Fabrication of silk nanofibril-embedded regenerated silk fibroin composite fiber by wet spinning

  • Chang Hyun, Bae;In Chul, Um
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • Wet-spun regenerated silk fibroin (RSF) fibers have been extensively studied owing to their 1) useful properties as biomaterials, including good blood compatibility and cyto-compatibility; 2) the various methods available to control the structural characteristics and morphology of the fiber, and 3) the possibility of fabricating blended fibers and new material-embedded fibers. In this study, silk nanofibrils prepared using a new method were embedded in RSF to fabricate wet-spun silk nanofibril/RSF composite fibers. Up to 2% addition of silk nanofibril, the silk nanofibril/RSF dope solution showed slight shear thinning, and the G' and G" of the dope solution were similar. However, above 3% silk nanofibril content, the viscosity of the dope solution significantly increased. In addition, shear thinning was remarkably evident, and the G' of the dope solution was much higher than the G", indicating a very elastic state. As the silk nanofibril content was increased, the wet-spun silk nanofibril/RSF composite fiber became uneven, with a rough surface, and more beaded fibers were produced. Scanning electron microscopy observations revealed that the beaded fibers were attributed to the inhomogeneous dispersion and presence of agglomerates of the silk nanofibrils. As the silk nanofibril content and RSF concentration increased, the maximum draw ratio decreased, indicating the deterioration of the wet spinnability and post-drawing performance of silk nanofibril/RSF.

Fabrication and Medical Applications of Lotus-leaf-like Structured Superhydrophobic Surfaces (연잎 모사 구조로의 초소수성 표면 처리와 의료분야의 적용에 관한 연구)

  • Lim, Jin Ik;Kim, Seung Il;Jung, Youngmee;Kim, Soo Hyun
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.411-419
    • /
    • 2013
  • Various biomaterials have been widely used for biomedical applications, including bio-organs, medical devices, and clinical devices like vessel, blood pumps, artificial kidneys and hearts, even in contact with blood. The issue of blood compatibility has been studied intensively to prevent negative effects such as thrombosis due to the implanted devices. The use of lotus-leaf-like structured surfaces has been extended to an increasing number of applications such as contamination prevention and anticorrosion applications. Various methods such as template, sol-gel transition, layer-by-layer, and other methods, developed for the fabrication of lotus-leaf-like surfaces have been reported for major industrial applications. Recently, the non-wettable character of these surfaces has been shown to be useful for biomedical applications ranging from blood-vessel replacement to antibacterial surface treatment. In this review, we provide a summary of current and future research efforts and opportunities in the development and medical applications of lotus-leaf-like structure surfaces.

Design of Customized Medical Information Convergence System for the Glycosuria and Heart's Blood Patients (당뇨 및 심혈관 질환자를 위한 개인 맞춤형 의료정보 융합시스템 설계)

  • Kim, Gui-Jung;Han, Jung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.90-96
    • /
    • 2009
  • The aim of the research is that disease database of the glycosuria and heart's blood is designed to manage the condition of the glycosuria and heart's blood patients periodically and continuously. Also we integrate patient database of existing OCS, PACS, EMR, ERP etc. and support optimal service timely that the patients want through intelligent integrated interface environment. For this, we will develop customized medical information convergence system. We construct intelligent database for disease of the glycosuria and heart's blood. And we support data integration environment for connection with existing systems - OCS, EMR, PACS etc. Also, in consideration of QoS, reliability, and expandability of customized medical information convergence system, we will design H/W, S/W, and data compatibility method.

Animal Experiment and Blood Biocompatibility Study of Polymer Valve (고분자판막의 동물실험 및 생체내 혈액적합성 연구)

  • 김상현;홍유선
    • Journal of Chest Surgery
    • /
    • v.30 no.4
    • /
    • pp.357-362
    • /
    • 1997
  • In vivo testings of the monoleaflet polymer valve were performed in seven dogs to prove its blood biocompatibility. The monoleaflet polymer valve used in this study was developed for short-term usage n the ventricular assist device. The frame and leaflet of the polymer valve were made of polyurethane. The inter-aortic valved conduit were implanted in four dogs and the ventriculo-atrial valved conduit was implanted in one dog. The ventricular assist devices with polymer valve were implanted in two dogs. The longest survival was 20 days. Main causes of death were bleeding and infection. To examine the blood compatibility, each blood sample was collected and RBC, WBC, hematocrit, hemoglobin, platelet and lactic acid dehydrogenase were analyzed. These studies thus far demonstrated that, with further development, a reliable and inexpensive polymer valve will be used in the ventricular assist device as short term usage.

  • PDF