• Title/Summary/Keyword: Block erection work-time

Search Result 7, Processing Time 0.018 seconds

Prototype of Block Tracing System for Pre-Erection Area using PDA and GPS (PDA 및 GPS를 이용한 옥외 작업장 블록 위치 추적 시스템 개발)

  • Shin, Jong-Gye;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.87-95
    • /
    • 2006
  • There are hundreds of ship blocks which are under the block assembly, painting, and outfitting assembly works in the pre-erection shops of shipyard. Generally, each block is planned to be processed in a pre-erection shop according to the block type by the long-term production-scheduling before six months. However, many blocks can't be processed in the planned time and the planned shop since the before and after block-processing changes or delays the planned sequential works in pre-erection shops. Therefore, it is essential to monitor the current location of each block and work in process to cope with the changed situation of pre-erection shops. Present study integrates PDA, GPS, and CDMA not only to chase the location of each block but also to exchange the pre-erection work order and the work report between the production-scheduling server and the production managers in the pre-erection shops. This study shows a prototype for the block tracing and process monitoring in the pre-erection shops.

A Study on the Work-time Estimation for Block Erections Using Stacking Ensemble Learning (Stacking Ensemble Learning을 활용한 블록 탑재 시수 예측)

  • Kwon, Hyukcheon;Ruy, Wonsun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.488-496
    • /
    • 2019
  • The estimation of block erection work time at a dock is one of the important factors when establishing or managing the total shipbuilding schedule. In order to predict the work time, it is a natural approach that the existing block erection data would be used to solve the problem. Generally the work time per unit is the product of coefficient value, quantity, and product value. Previously, the work time per unit is determined statistically by unit load data. However, we estimate the work time per unit through work time coefficient value from series ships using machine learning. In machine learning, the outcome depends mainly on how the training data is organized. Therefore, in this study, we use 'Feature Engineering' to determine which one should be used as features, and to check their influence on the result. In order to get the coefficient value of each block, we try to solve this problem through the Ensemble learning methods which is actively used nowadays. Among the many techniques of Ensemble learning, the final model is constructed by Stacking Ensemble techniques, consisting of the existing Ensemble models (Decision Tree, Random Forest, Gradient Boost, Square Loss Gradient Boost, XG Boost), and the accuracy is maximized by selecting three candidates among all models. Finally, the results of this study are verified by the predicted total work time for one ship among the same series.

Spatial Scheduling in Shipbuilding Industry

  • Duck Young Yoon;Varghese Ranjan;Koo Chung Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.106-110
    • /
    • 2004
  • In any large heavy industry like that of ship building, there exist a lot of complications for the arrangement of building blocks optimally for the minimal space consumption. The major problem arises at yard because of laxity in space for arranging the building blocks of ship under construction. A standardized erection sequence diagram is generally available to provide the prioritised erection sequence. This erection sequence diagram serves as the frame work. In order to make a timely erection of the blocks a post plan has to be developed so that the blocks lie in the nearest possible vicinity of the material handling devices while keeping the priority of erection. Therefore, the blocks are arranged in the pre-erection area. This kind of readiness of blocks leads to a very complex problem of space. This arises due to the least available space leading to an urgent need of an availability of intelligent spatial schedule without compromising the rate of production. There exists two critical problems ahead namely, the spatial occupation layout of pre-erection area and the emptying pattern in the spatial vicinity. The block shape is assumed be rectangular. The related input data's are the dates of erection (earliest as well as the latest), geometrical parameters of block available on pre-erection area, slack time and the like.

  • PDF

A Study on method of load attribute for Spatial Scheduling (공간일정계획에서의 부하조정을 위한 방법론 연구)

  • Back Dong-Sik;Yoon Duck-Young;Kwak Hyun Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.96-100
    • /
    • 2004
  • In the ship building industry various problems of erection is counterfeited due to formation of bottle necks in the block erection flow pattern This kind of problems cause accumulated problems in real-time erection right on the floor, When such a problem is approached, a support data of the entire erection sequence should be available, Here planning is done by reasoning about the future events in order to verify the existence of a reasonable series of actions to accomplish a goal. This technique helps in achieving benefits like handling search complications, in resolving goal conflicts and anticipation of bottleneck formation well in advance to take necessary countermeasures and boosts the decision support system, The data is being evaluated and an anticipatory function is to be developed This function is quite relevant in day to day planning operation. The system updates database with rearrangement of off-critical blocks in the erection sequence diagram, As a result of such a system, planners can foresee months ahead and can effectively make decisions regarding the control of loads on the man, machine and work flow pattern, culminating to an efficient load management. Such a foreseeing concept helps us in eliminating backtracking related adjustment which is less efficient compared to the look-ahead concept. An attempt is made to develop a computer program to update the database of block arrangement pattern based on heuristic formulation.

  • PDF

A System for Thermal Distortion Analysis of Hull Structures by Solar Radiation (선체의 태양복사 열변형 해석을 위한 전처리시스템)

  • Ha, Yunsok;Lee, Donghoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.275-281
    • /
    • 2016
  • One of the most important things for quality to meet ship-production schedule is an accuracy control. A ship is assembled by welding through whole production process, so it is important that loss by correction will not happen as much as possible by using some engineering skills like reverse design, reverse setting and margin for thermal shrinkage. These efforts are a quite effective in fabrication stages, but not in erection stages. If a ship block which consists of common steel is exposed to directional solar radiation, its dimensional accuracy will change high as time by its thermal expansion coefficient. Therefore, the measuring work would be often done at dawn or evening even with having a very accurate device. In this study, an FE analysis method is developed to solve this problem. It can change measured data affected by solar thermal distortion to ones not, even though ship-block is measured at an arbitrary time. It will use the time when measuring, the direction of block and the weather record by satellites. It is confirmed by a comparison between measured data of a ship-block and the result by suggested analysis method. Furthermore, a pre-processing system is also developed for fast application of the suggested analysis method.

A Study on the Construction of Detail Integrated Scheduling System of Ship Building Process (선박건조공정의 미세 통합 일정 관리 체계 구축에 관한 연구)

  • Kim, Yong-Seop;Lee, Dae-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.48-54
    • /
    • 2007
  • Higher productivity and less cost during the manufacturing process of ships are required to maintain international competitiveness of modern shipbuilding industries. The integrated hull/ outfitting/ painting scheduling(IHOP) process is a final point, where logistics are finally being integrated and upcoming schedules are made. Therefore, more profits are expected from IHOP by effective management. In this thesis, IHOP is proposed in order to solve how to choose block erection date with IHOP scheduling logic. The result of IHOP scheduling is highly advised to utilize fabrication, outfitting shops. A standardized operation and load of resource will eventually be applied in long-term time span point of view for this will make it easy to enable capacity planning and workforce planning. It is also expected to eliminate inefficiency in overtime work and efficiently utilize manpower in short-term.

Erection Method for Marine Section of Double Deck Warren Truss in Young Jong Grand Bridge (영종대교 복층 Warren Truss 해상구간 가설공법)

  • Kim Jeong-Woong;Seo Jea-Hwa;Yang Mu-Seok;Yuk Il -Dong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.232-239
    • /
    • 2001
  • Young Jong Grand Bridge is approach traffic road of New Inchon International Airport which covers hub airport function in northeast asia. The total span length of this bridge is $4,420{\cal}m$ and this main bridge type is, the first in the world, Double Deck Self Anchored Suspension Bridge, designed as double deck systems to be arranged by road and railroad. Approach bridges to be connected with main span also are composed double deck steel truss and steel box girder to consider a continuity with this span. Our company erected $1,375{\cal}m$(about 60,000tons) of double deck steel truss bridge type which is composed by 6 traffic lane on upper deck and 4 traffic lane and Double track railroad on lower deck. The original installation method of this bridge was planed to install about 75 meters bridge blocks to use floating crane, after temporary bent was constructed between permanent piers. But this method which had to construct many temporary bents in the sea had the matter that construction periods can become lengthen and construction cost can be risen. To overcome the uncertainty to ensure high qualify of bridge and economic project execution, our company developed new bridge erection method to assure both quality control and economic construction work. The new erection method which was developed by us was one that could transport and install long bridge block, $120{\cal}m$ unit at a time and that temporary bent was not required. We hope that this paper is used as technical data which will erect bridge in the western sea and others marine region.

  • PDF