• Title/Summary/Keyword: Block Allocation

Search Result 153, Processing Time 0.026 seconds

A Bitmap-based Continuous Block Allocation Scheme for Realtime Retrieval Service (실시간 재생 서비스를 위한 비트맵 방식의 연속 블록 할당 기법)

  • 박기현
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.3
    • /
    • pp.316-322
    • /
    • 2002
  • In this paper we consider continuous block allocation scheme of UNIX file system to support real time retrieval service. The proposed block allocation scheme is designed to place real time data at appropriate disk block location in considering the consume-rate that is given with real time data. To effectively determine the disk block location we analyze the relationship between consume-rate and the two variable factors that are the number of continuous blocks and the cylinder distance of logically consecutive data. In traditional UNIX block allocation scheme it is in fact impossible to find continuous free disk blocks in a specific cylinder location. Thus we propose new bitmap-based free block allocation scheme that enables to determine whether a block in specific cylinder location is free state, or not.

  • PDF

An Automatic Block Allocation Methodology at Shipbuilding Midterm Scheduling (조선 중일정 블록 배량 계획 자동화 연구)

  • Hwang, InHyuck;Nam, SeungHoon;Shin, JongGye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.409-416
    • /
    • 2012
  • Most of the shipbuilding scheduling researches so far have been conducted with stress on the dock plan. That is due to the fact that the dock is the least extendable resource in shipyards and its overloading is difficult to resolve. However, once the dock scheduling is completed, it is also important to make a plan that make the best use of the rest of the resources in the shipyard, so that any additional cost is minimized. This study automates block allocation process by analyzing the existing manual process that designates production bays for the blocks during the midterm planning. Also, a planning scenario validation method is suggested, where block allocation scenarios based on diagrams are edited and simulated.

조선 도장 공장 운영 방안 수립에 관한 연구

  • 최동희;박주철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.286-289
    • /
    • 2001
  • This paper deals with the procedures of effective mid-term Operation Planning establishment for painting shop in shipbuilding. and develop prototype system. In general, the block painting process consists of two stages such as blasting operation for surface preparation and painting operation for paint application for blocks. Weather condition is a potent Influence on those operations. The procedures consists of four steps, Load analysis, Generate alternative simulation plan. Implementation of Allocation automation module and Compare result of each simulation plan. Explain of each step. as follows, 1.step, Load analysis measure amount of assigned workload and manhour. 2.step, simulation scheme include alterable control variable such as overtime, weather. Auto allocating module carry out feasibility of simulation plan. 3.step, Allocation automation module are composed of three algorithms, as followings: - the block allocation algorithm that determines the number of blocks to be processed each day, - the team allocation algorithm that allocates blocks to worker groups. - the block arrangement algorithm that arrange blocks in blasting and painting cells. Since the block arrangement algorithm is conducted simultaneously with the team allocation algorithm, the total structure of the operating algorithms is considered to have two phases: first, daily load balancing with capacity limit and second, team allocation considering arrangement each day 4 step, Comparing result of each simulation plan. and select best simulation plan.

  • PDF

Performance Analysis of Block Allocation of File Systems on Linux Environment (리눅스 환경에서 파일 시스템들의 블록 할당 성능 분석)

  • Choi, Jin-oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.355-357
    • /
    • 2014
  • Linux environment that is commonly used at embedded systems, supports various file systems as Ext2, FAT, NTFS, ets. The file system that is equiped on the embedded system is mostly implemented on mini hard disk or flash memory. The types of the file system of the system make an effect on the performance of a application programs. The factors of file system performance on a same media are block allocation and block free time. On these factors, block free time is not so different according to the type of file systems. This thesis performs the performance benchmark of a Ext2, FAT and NTFS file systems about block allocation performance. As the result, it is discussed that what file system is better at which case.

  • PDF

A Block Adaptive Bit Allocation for Progressive Transmission of Mean Difference Pyramid Image (Mean difference pyramid 영상의 점진적 전송을 위한 블록 적응 비트 배정)

  • 김종훈;신재범;심영석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.130-137
    • /
    • 1993
  • In this paper, A progressive coding of mean difference pyramid by Hadamard transform of the difference between two successive pyramid levels has been studied. A block adaptive bit allocation method based on ac energy of each sub-block has been proposed, which efficiently reduces the final distortion in the progressive transmission of image parameters. In our scheme, the dc energy equals the sum of the quantization errors of the Hadamard transform coefficients at previous level. Therefore proposed allocation method includes the estimation of dc energy at each pyramid level. Computer simulation results show some improvements in terms of MSE and picture quality over the conventional fixed allocation scheme.

  • PDF

A Memory Configuration Method for Virtual Machine Based on User Preference in Distributed Cloud

  • Liu, Shukun;Jia, Weijia;Pan, Xianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5234-5251
    • /
    • 2018
  • It is well-known that virtualization technology can bring many benefits not only to users but also to service providers. From the view of system security and resource utility, higher resource sharing degree and higher system reliability can be obtained by the introduction of virtualization technology in distributed cloud. The small size time-sharing multiplexing technology which is based on virtual machine in distributed cloud platform can enhance the resource utilization effectively by server consolidation. In this paper, the concept of memory block and user satisfaction is redefined combined with user requirements. According to the unbalanced memory resource states and user preference requirements in multi-virtual machine environments, a model of proper memory resource allocation is proposed combined with memory block and user satisfaction, and at the same time a memory optimization allocation algorithm is proposed which is based on virtual memory block, makespan and user satisfaction under the premise of an orderly physical nodes states also. In the algorithm, a memory optimal problem can be transformed into a resource workload balance problem. All the virtual machine tasks are simulated in Cloudsim platform. And the experimental results show that the problem of virtual machine memory resource allocation can be solved flexibly and efficiently.

LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

  • Xu, Hua;Liu, Weiqing;Shu, Guansheng;Li, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.204-226
    • /
    • 2018
  • Big data processing applications have been migrated into cloud gradually, due to the advantages of cloud computing. Hadoop Distributed File System (HDFS) is one of the fundamental support systems for big data processing on MapReduce-like frameworks, such as Hadoop and Spark. Since HDFS is not aware of the co-location of virtual machines in the cloud, the default scheme of block allocation in HDFS does not fit well in the cloud environments behaving in two aspects: data reliability loss and performance degradation. In this paper, we present a novel location-aware data block allocation strategy (LDBAS). LDBAS jointly optimizes data reliability and performance for upper-layer applications by allocating data blocks according to the locations and different processing capacities of virtual nodes in the cloud. We apply LDBAS to two stages of data allocation of HDFS in the cloud (the initial data allocation and data recovery), and design the corresponding algorithms. Finally, we implement LDBAS into an actual Hadoop cluster and evaluate the performance with the benchmark suite BigDataBench. The experimental results show that LDBAS can guarantee the designed data reliability while reducing the job execution time of the I/O-intensive applications in Hadoop by 8.9% on average and up to 11.2% compared with the original Hadoop in the cloud.

Scence Change Adaptive Bit Rate Control Using Local Variance (국부 분산을 이용한 장면 전환 적응 비트율 제어)

  • 이호영;김기석;박영식;송근원;남재열;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.675-684
    • /
    • 1997
  • The bit rate control algorithm which is capable of handing scene change is proposed. In MPEG-2 TM5, block variance is used to measure block activity. But block variance is not consistent with human visual system and does not differenciate the distribution of pixel values within the block. In target bit allocation process of TM5, global complexity, obtained by results of previous coded pictures, is used. Since I pictures are spaced relatively far apart, their complexity estimate is not very accurate. In the proposed algorithm local variance is used to measure block activity and detect scene change. Local variance, using deviation from the mean of neighboring pixels, well represents the distribution of pixel values within the block. If scene change is detected, the local variance information is used for target bit allocation process. Allocating target bits for I picture, the average local variance difference between previous and current I picture is considered. The experimental results show that the proposed algorithm can detect scene change very precisely and gives better picture quality and higher PSNR values than MPEG-2 TM5.

  • PDF

Design and Implementation of MODA Allocation Scheme based on Analysis of Block Cleaning Cost (블록 클리닝 비용 분석에 기초한 MODA할당 정책 설계 및 구현)

  • Baek, Seung-Jae;Choi, Jong-Moo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.11
    • /
    • pp.599-609
    • /
    • 2007
  • Due to the restrictions of Flash memory such as overwrite limitation and write/erase operational unit differences, block cleaning is required in Flash memory based file systems and known as a key factor on the performance of file systems. In this paper, we identify three parameters, namely utilization, invalidity and uniformity, and analyze how the parameters affect the cost of block cleaning. The analysis show that as uniformity degrades, the cost of block cleaning increases drastically. To overcome this problem, we design a new modification-aware(MODA) page allocation scheme that strives to keep uniformity high by separating frequently-updating data from infrequently-updating data. Real implementation experiments conducted on an embedded system show that the MODA scheme can actually enhance uniformity of Flash memory, which consequently leads to reduce the cost of block cleaning with an average of 123%, compared to the traditional sequential allocation scheme that is used in YAFFS.

Optimal Power Allocation and Outage Analysis for Cognitive MIMO Full Duplex Relay Network Based on Orthogonal Space-Time Block Codes

  • Liu, Jia;Kang, GuiXia;Zhu, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.924-944
    • /
    • 2014
  • This paper investigates the power allocation and outage performance of MIMO full-duplex relaying (MFDR), based on orthogonal space-time block codes (OSTBC), in cognitive radio systems. OSTBC transmission is used as a simple means to achieve multi-antenna diversity gain. Cognitive MFDR systems not only have the advantage of increasing spectral efficiency through spectrum sharing, but they can also extend coverage through the use of relays. In cognitive MFDR systems, the primary user experiences interference from the secondary source and relay simultaneously, owing to full duplexing. It is therefore necessary to optimize the transmission powers at the secondary source and relay. In this paper, we propose an optimal power allocation (OPA) scheme based on minimizing the outage probability in cognitive MFDR systems. We also analyse the outage probability of the secondary user in noise-limited and interference-limited environments in Nakagami-m fading channels. Simulation results show that the proposed schemes achieve performance improvements in terms of reducing outage probability.