• Title/Summary/Keyword: Bit Array

Search Result 326, Processing Time 0.026 seconds

A 5-20 GHz 5-Bit True Time Delay Circuit in 0.18 ㎛ CMOS Technology

  • Choi, Jae Young;Cho, Moon-Kyu;Baek, Donghyun;Kim, Jeong-Geun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.193-197
    • /
    • 2013
  • This paper presents a 5-bit true time delay circuit using a standard 0.18 ${\mu}m$ CMOS process for the broadband phased array antenna without the beam squint. The maximum time delay of ~106 ps with the delay step of ~3.3 ps is achieved at 5-20 GHz. The RMS group delay and amplitude errors are < 1 ps and <2 dB, respectively. The measured insertion loss is <27 dB and the input and output return losses are <12 dB at 5-15 GHz. The current consumption is nearly zero with 1.8 V supply. The chip size is $1.04{\times}0.85\;mm^2$ including pads.

A New Field Programmable Gate Array: Architecture and Implementation

  • Cho, Han-Jin;Bae, Young-Hwan;Eum, Nak-Woong;Park, In-Hag
    • ETRI Journal
    • /
    • v.17 no.2
    • /
    • pp.21-30
    • /
    • 1995
  • A new architecture of field programmable gate array for high-speed datapath applications is presented. Its implementation is facilitated by a configurable interconnect technology based on a one-time, two-terminal programmable, very low-impedance anti-fuse and by a configurable logic module optimized for datapath applications. The configurable logic module can effectively implement diverse logic functions including sequential elements such as latches and flip-flops, and arithmetic functions such as one-bit full adder and two-bit comparator. A novel programming architecture is designed for supplying large current through the anti-fuse element, which drops the on-resistance of anti-fuse below $20{\Omega}$. The chip has been fabricated using a $0.8-{\mu}m$ n-well complementary metal oxide semiconductor technology with two layers of metalization.

  • PDF

Development of the Digital Controller for High Precision Digital Power Supply (고정밀전원장치를 위한 디지털 제어기 개발)

  • Ha, K.M.;Lee, S.K.;Kim, Y.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.249-250
    • /
    • 2006
  • In this paper, hardware design and implementation of digital controller for the High Precision Digital Power Supply (HPDPS) based on Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA) is presented. Developed digital controller is composed of high resolution Digital Pulse Width Modulation (DPWM) and high resolution analog to digital converter circuit with anti-aliasing filter. And Digital Signal Processor (DSP) has the capability of a few micro-second calculation time for one feedback loop. 32-bit DSP and DPWM with 150[ps] step resolution is used to implement the HPDPS. Also 18-bit 2 mega sample per second ADC board is adopted for the developed digital controller. Also, hardware structure of the developed digital controller and experimental results of the first prototype board for HPDPS is described.

  • PDF

The Design of a Code-String Matching Processor using an EWLD Algorithm (EWLD 알고리듬을 이용한 코드열 정합 프로세서의 설계)

  • 조원경;홍성민;국일호
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.127-135
    • /
    • 1994
  • In this paper we propose an EWLD(Enhanced Weighted Levenshtein Distance) algorithm to organize code-string pattern matching linear array processor based on the mappting to an one-dimensional array from a two-dimensional matching matrix, and design a processing element(PE) of the processor, N PEs are required instead of NS02T in the processor because of the mapping. Data input and output between PEs and all internal operations of each PE are performed in bit-serial fashion. The bit-serial operation consists of the computing of word distance (WD) by comparison and the selection of optimal code transformation path, and takes 22 clocks as a cycle. The layout of a PE is designed based on the double metal $1.5\mu$m CMOS rule. About 1,800 transistors consistute a processing element and 2 PEs are integrated on a 3mm$\times$3mm sized chip.

  • PDF

3-bit Optical True Time Delay for 10 GHz Phased Array Antennas Composed of Optical 2$\times$2 MEMS Switches and Fiber Delay Lines (2$\times$2 MEMS 스위치와 광섬유지연선로를 이용한 10 GHz 위상배열 안테나용 3-bit 광학적 실시간 지연선로)

  • 이백송;신종덕;김부균
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.320-321
    • /
    • 2003
  • 위성통신 및 무선통신에서 안테나의 수신 감도를 향상시키기 위한 노력은 계속되어 왔다. 안테나의 지향성을 높이기 위하여 다수의 동형 단위 안테나들을 일정 방향으로 배열하여 안테나를 기계적으로 회전시키지 않고, 고정된 다수의 동형 단위 안테나들에서 방사되는 전파의 위상을 전자적으로 변화시켜 방사 빔을 주사하는 방법, 즉 위상배열 안테나(Phased Array Antenna)를 널리 사용하고 있다. 위상배열 안테나의 단위 안테나에서 방사되는 전파의 위상을 변화시키기 위해선 실시간 시간지연 시스템이 필요하다. (중략)

  • PDF

A Hardware Architecture of SEED Algorithm with 320 Mbps (320 Mbps SEED 알고리즘의 하드웨어 구조)

  • Lee Haeng-Woo;Ra Yoo-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.291-297
    • /
    • 2006
  • This paper describes the architecture for reducing its size and increasing the computation rate in implementing the SEED algorithm of a 128-bit block cipher, and the result of the circuit design. In order to increase the computation rate, it is used the architecture of the pipelined systolic array. This architecture is a simple thing without involving any buffer at the input and output part. By this circuit, it can be recorded 320 Mbps encryption rate at 10 MHz clock. We designed the circuits with goals of the high-speed computations and the simplified structures.

Four-channel GaAs multifunction chips with bottom RF interface for Ka-band SATCOM antennas

  • Jin-Cheol Jeong;Junhan Lim;Dong-Pil Chang
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.323-332
    • /
    • 2024
  • Receiver and transmitter monolithic microwave integrated circuit (MMIC) multifunction chips (MFCs) for active phased-array antennas for Ka-band satellite communication (SATCOM) terminals have been designed and fabricated using a 0.15-㎛ GaAs pseudomorphic high-electron mobility transistor (pHEMT) process. The MFCs consist of four-channel radio frequency (RF) paths and a 4:1 combiner. Each channel provides several functions such as signal amplification, 6-bit phase shifting, and 5-bit attenuation with a 44-bit serial-to-parallel converter (SPC). RF pads are implemented on the bottom side of the chip to remove the parasitic inductance induced by wire bonding. The area of the fabricated chips is 5.2 mm × 4.2 mm. The receiver chip exhibits a gain of 18 dB and a noise figure of 2.0 dB over a frequency range from 17 GHz to 21 GHz with a low direct current (DC) power of 0.36 W. The transmitter chip provides a gain of 20 dB and a 1-dB gain compression point (P1dB) of 18.4 dBm over a frequency range from 28 GHz to 31 GHz with a low DC power of 0.85 W. The P1dB can be increased to 20.6 dBm at a higher bias of +4.5 V.

Accurate Characterization of T/R Modules with Consideration of Amplitude/Phase Cross Effect in AESA Antenna Unit

  • Ahn, Chang-Soo;Chon, Sang-Mi;Kim, Seon-Joo;Kim, Young-Sik;Lee, Juseop
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.417-424
    • /
    • 2016
  • In this paper, an accurate characterization of a fabricated X-band transmit/receive module is described with the process of generating control data to correct amplitude and phase deviations in an active electronically scanned array antenna unit. In the characterization, quantization errors (from both a digitally controlled attenuator and a phase shifter) are considered using not theoretical values (due to discrete sets of amplitude and phase states) but measured values (of which implementation errors are a part). By using the presented procedure for the characterization, each initial control bit of both the attenuator and the phase shifter is closest to the required value for each array element position. In addition, each compensated control bit for the parasitic cross effect between amplitude and phase control is decided using the same procedure. Reduction of the peak sidelobe level of an array antenna is presented as an example to validate the proposed procedure.

Visual Cell OOK Modulation : A Case Study of MIMO CamCom (시각 셀 OOK 변조 : MIMO CamCom 연구 사례)

  • Le, Nam-Tuan;Jang, Yeong Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.781-786
    • /
    • 2013
  • Multiplexing information over parallel data channels based on RF MIMO concept is possible to achieve considerable data rates over large transmission ranges with just a single transmitting element. Visual multiplexing MIMO techniques will send independent streams of bits using the multiple elements of the light transmitter array and recording over a group of camera pixels can further enhance the data rates. The proposed system is a combination of the reliance on computer vision algorithms for tracking and OOK cell frame modulation. LED array are controlled to transmit message in the form of digital information using ON-OFF signaling with ON-OFF pulses (ON = bit 1, OFF = bit 0). A camera captures image frames of the array which are then individually processed and sequentially decoded to retrieve data. To demodulated data transmission, a motion tracking algorithm is implemented in OpenCV (Open source Computer Vision library) to classify the transmission pattern. One of the most advantages of proposed architecture is Computer Vision (CV) based image analysis techniques which can be used to spatially separate signals and remove interferences from ambient light. It will be the future challenges and opportunities for mobile communication networking research.

CMOS true-time delay IC for wideband phased-array antenna

  • Kim, Jinhyun;Park, Jeongsoo;Kim, Jeong-Geun
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.693-698
    • /
    • 2018
  • This paper presents a true-time delay (TTD) using a commercial $0.13-{\mu}m$ CMOS process for wideband phased-array antennas without the beam squint. The proposed TTD consists of four wideband distributed gain amplifiers (WDGAs), a 7-bit TTD circuit, and a 6-bit digital step attenuator (DSA) circuit. The T-type attenuator with a low-pass filter and the WDGAs are implemented for a low insertion loss error between the reference and time-delay states, and has a flat gain performance. The overall gain and return losses are >7 dB and >10 dB, respectively, at 2 GHz-18 GHz. The maximum time delay of 198 ps with a 1.56-ps step and the maximum attenuation of 31.5 dB with a 0.5-dB step are achieved at 2 GHz-18 GHz. The RMS time-delay and amplitude errors are <3 ps and <1 dB, respectively, at 2 GHz-18 GHz. An output P1 dB of <-0.5 dBm is achieved at 2 GHz-18 GHz. The chip size is $3.3{\times}1.6mm^2$, including pads, and the DC power consumption is 370 mW for a 3.3-V supply voltage.